\qquad
\qquad

Number
Unit 1 Line Master 1

Place-Value Chart to Hundred Thousands

Thousands			Units		
Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones

Thousands			Units		
Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones

\qquad
\qquad

Number
Unit 1 Line Master 2

Place-Value Relationships

Complete the chart.
Explain the relationships you see in the chart.

Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones
How many ten thousands are in one hundred thousand?	How many thousands are in ten thousand?	How many hundreds are in one thousand?	How many tens are in one hundred?	How many ones are in one ten?	
How many thousands are in one hundred thousand?	How many hundreds are in ten thousand?	How many tens are in one thousand?	How many ones are in one hundred?		
How many hundreds are one hundred thousand?	How many tens are in ten thousand?	How many ones are in one thousand?			
How many tens are in one hundred thousand?	How many ones are in ten thousand?				
How many ones are in one hundred thousand?					

\qquad
\qquad

Number
Unit 1 Line Master 3a

Spin, Roll, and Add!

Play with a partner.

Materials:

- Spinner
- Open paperclip
- Number cube
- Place-value chart

What to Do

On the spinner, use a pencil point to hold the open paperclip as the pointer.
One player chooses a 6-digit number and records it.
The other player:

- Spins the pointer to see which digit will change.
- Rolls the number cube to see how many $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$, or 1000 s to add.
- Records the addition and writes the number in a place-value chart.
Take turns spinning and rolling to build new numbers.
For example:
Rudy chose 215488 to start.
Emmy spun Hundreds and rolled 1, so she added 100.
Then, Rudy spun Thousands and rolled 4, so he added 4000.

Start: 215488
$215488+100=215588$
$215588+4000=219588$

\qquad
\qquad

Spin, Roll, and Add! (cont'd)

\qquad
\qquad

Number
Unit 1 Line Master 4

Spin, Roll, and Subtract!

Play with a partner.

Materials:

- Spinner
- Open paperclip
- Number cube
- Place-value chart

What to Do

On the spinner, use a pencil point to hold the open paperclip as the pointer.
One player chooses a 6-digit number and records it.
The other player:

- Spins the pointer to see which digit will change.
- Rolls the number cube to see how many $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$, or 1000 s to subtract.
- Records the subtraction and writes the number in a place-value chart.
Take turns spinning and rolling to build new numbers.
For example:
Rudy chose 215488 to start.
Emmy spun Hundreds and rolled 1, so she subtracted 100.
Then, Rudy spun Thousands and rolled 4, so he subtracted 4000.

Start: 215488
$215488-100=215388$
$215588-4000=211588$

\qquad

Number
Unit 1 Line Master 5

Graphing Place Value

Play with a partner.

Materials:

- Number cube

What to Do

For each graph:

- Roll the number cube 6 times to get a 6-digit number.
- Write the number at the top of the graph.
- Draw a bar graph to represent your number.

Graphing Place Value: \qquad

\qquad

Open Number Line

\qquad
\qquad

Number
Unit 1 Line Master 7a

Spin and Compare

Play with a partner.

Materials:

- Open paperclip as pointer

What to Do

Each of you spins the pointer to create a 6-digit number.

Spin once for each digit.
You decide on its place-value position.
Try to create the greatest number you can.
Compare numbers with your partner.
The player with the greater number scores 1 point.
Play until one of you reaches 10 points.

\qquad

Number Unit 1 Line Master 7b

Spin and Compare (cont'd)

Player 1	or	Player 2

Variation:
 Score a point when you make a smaller number than your partner.

Activity 1 Assessment

Representing Numbers to 1000000

Activity 1 Assessment

Representing Numbers to 1000000

Activity 2 Assessment Comparing Numbers to 1000000

Comparing and Ordering Quantities		
Compares numbers using only the first digits. $78543 \quad 65987$ " 78543 is greater than 65987 because 7 is bigger than 6 ."	Compares numbers with benchmarks. "I compared the numbers to 100000.78543 is less than 100000 and 125629 is greater than 100000 . So, 125629 is greater."	Visualizes benchmarks on a number line to compare. "I picture 125629 farther to the right on the line than 78543. So, 125629 is greater than 78543 ."
Observations/Documentation		

Activity 2 Assessment Comparing Numbers to 1000000

Comparing and Ordering Quantities (cont'd)		
Uses place value understanding to compare numbers, digit by digit. Both start with 125 thousands. 3 hundreds is greater than 1 hundred, 2 tens is greater than 0 tens, and 7 ones is less than 9 ones. So, 125327 is greater than 125 109."	Compares and orders three or more numbers using a variety of strategies. $74307 \quad 367104 \quad 366455$ " 74307 has only 5 digits, so it's the least. To compare 367104 and 366455 , I have to look at the thousands place; 7 is greater than 6, so 367104 is the greatest number.'	Compares numbers flexibly and records comparisons symbolically (<, =, >). $375867<497328$ "Both are 6-digit numbers. The first digit tells me that 375867 is less than 497 328." $375867>356095$ "For this pair, I have to check the ten-thousands place."
Observations/Documentation		

Activity 3 Assessment

Number Relationships and Place Value Consolidation

Activity 3 Assessment

Number Relationships and Place Value Consolidation

Activity 3 Assessment

Number Relationships and Place Value Consolidation

Comparing and Ordering Quantities		
Compares numbers using only the first digits. 7854365987 " 78543 is greater than 65987 because 7 is bigger than 6 ."	Compares numbers with benchmarks. "I compared the numbers to 100000.78543 is less than 100000 and 125629 is greater than 100000 . So, 125629 is greater."	Visualizes benchmarks on a number line to compare. "I picture 125629 farther to the right on the line than 78543. So, 125629 is greater than $78543 . "$
Observations/Documentation		

Activity 3 Assessment

Number Relationships and Place Value Consolidation

Comparing and Ordering Quantities (cont'd)		
Uses place value understanding to compare numbers, digit by digit. "Both start with 125 thousands. 3 hundreds is greater than 1 hundred, 2 tens is greater than 0 tens, and 7 ones is less than 9 ones. So, 125327 is greater than 125 109."	Compares and orders three or more numbers using a variety of strategies. $74307 \quad 367104 \quad 366455$ "74 307 has only 5 digits, so it's the least. To compare 367104 and 366455 , I have to look at the thousands place; 7 is greater than 6, so 367104 is the greatest number."	Compares numbers flexibly and records comparisons symbolically (<, =, >). $375867<497328$ "Both are 6-digit numbers. The first digit tells me that 375867 is less than 497328 ." $375867>356095$ "For this pair, I have to check the ten-thousands place."
Observations/Documentation		

\qquad
\qquad

Number
Unit 2 Line Master 1

Conquer the Obstacles!
 Gameboard

$\text { Start }{ }^{1}$	2	3	4		$\frac{20}{\square}^{6}$	7	8	9	
20	19	18	17	16	15	mi^{14}	4^{413}	12	11
21	22		24	25	26	27	28	29	
40		38	37	36	π^{45}	34	33	32	31
41	42	43		45	46	47	48	49	
460	59	58	57	$x^{4} 56$	55	54	53	52	51
61	62	63		65	66	67		69	70
$\begin{array}{r} 80 \\ \text { Finish } \end{array}$	79	$\frac{\pi 7^{78}}{4}$	77	76	75	74	73	4^{72}	71

\qquad
\qquad

Number

Unit 2 Line Master 2a

Conquer the Obstacles!

Game Cards

\qquad
\qquad

\qquad
\qquad

Number Unit 2 Line Master 2c Conquer the Obstacles! (cont'd) Game Cards

\qquad
\qquad

Number
Unit 2 Line Master 2d

Conquer the Obstacles! (cont'd)

Game Cards

There are 80 tennis balls in a bin in the gym. The gym teacher adds 15 new tennis balls to the bin. How many tennis balls are there now?	The school has a bag of 75 pinnies. The gym teacher used 30 pinnies for an activity. How many pinnies are still in the bag?	The art club has 122 markers. A community group donated another 70 markers. How many markers do they have now?
A family drives 97 km before stopping for a break. Then, they drive another 63 km . How many kilometres was the drive?	The school library has a collection of Chromebooks. The library loans 35 to one class. There are 105 Chromebooks left. How many are in the collection?	Class A raised \$78 for the Terry Fox run. Your class raises some more money. The total is now $\$ 138$. How much money did your class raise?
The school raised $\$ 1426$ for the Terry Fox run. Your class raises some more money. The total is now $\$ 1581$. How much money did your class raise?	The art club has 452 markers. A community group donated another 212 markers. How many markers do they have now?	A family drives 137 km before stopping for a break. Then, they drive another 84 km . How many kilometres was the drive?

\qquad
\qquad

Number
 Unit 2 Line Master 2e
 Conquer the Obstacles! (cont'd) Game Cards

\qquad
\qquad

Number Unit 2 Line Master 2f Conquer the Obstacles! (cont'd) Game Cards

\qquad
\qquad

Activity 4 Assessment

 Estimating Sums and Differences| Estimating Sums and Differences | | | |
| :---: | :---: | :---: | :---: |
| Uses front-end estimation
 Estimate: $28+46+177+158$ $20+40+100+100=260$
 "I estimate about 260." | Uses rounding to write each number to the nearest ten $\begin{aligned} & \text { Estimate: } 28+46+177+158 \\ & 30+50+180+160=420 \end{aligned}$
 "I estimate about 420." | Uses rounding and compensation
 Estimate: $28+46+177+158$
 I'll round two up and two down. $30+40+170+160=400$
 "I estimate about 420." | Estimates flexibly to check reasonableness of solutions $3123+1248+4169+1150=9690$
 Estimate to check:
 $123+169$ is about 300 ,
 so $3123+4169$ is about 7300 .
 $248+150$ is about 400 ,
 so $1248+1150$ is about 2400 .
 $7300+2400$ is 9700 .
 Since 9690 is close to 9700 , the solution seems reasonable. |
| Observations/Documentation | | | |
| | | | |

Activity 5 Assessment

Modelling Addition and Subtraction

Conceptual Meaning of Whole Number Addition and Subtraction		
Recognizes addition and subtraction situations and models concretely to add or subtract to 1000	Models and symbolizes ways to solve problems to 1000 $148+223=?$	Uses an understanding of place value to decompose both numbers to solve problems to 10000 $\left.\begin{array}{rl} 896-345 & =? \\ 800-300 & =500 \\ 90-40 & = \\ 6-50 & 1 \end{array}\right\} 500+50+1=551$ "I subtracted the hundreds, the tens, and then the ones."
Observations/Documentation		

Activity 5 Assessment

Modelling Addition and Subtraction

Activity 6 Assessment

Adding and Subtracting Larger Numbers

Conceptual Meaning of Whole Number Addition and Subtraction		
Recognizes addition and subtraction situations and models concretely to add or subtract to 1000 $148+223=?$	Models and symbolizes ways to solve problems to 1000 $148+223=?$	Uses an understanding of place value to decompose both numbers to solve problems to 10000 $\left.\begin{array}{rl} 896-345 & =? \\ 800-300 & =500 \\ 90-40 & =50 \\ 6-5 & = \end{array}\right\} 500+50+1=551$ "I subtracted the hundreds, the tens, and then the ones."
Observations/Documentation		

Activity 6 Assessment

Adding and Subtracting Larger Numbers

Conceptual Meaning of Whole Number Addition and Subtraction (cont'd)		
Uses an understanding of place value to add and subtract to 10000 using the standard algorithm $\begin{array}{r} 33^{1} 48 \\ +6548 \\ \hline 9896 \end{array}$ "I had 16 ones. So I traded 10 ones for 1 ten."	Estimates to determine if answer to problem is reasonable $896-345=?$ " 896 is close to 900.345 is close to 350 . $900-350=550.550$ is close to 551 , the answer I calculated, so my answer is reasonable."	Creates and solves addition and subtraction problems flexibly using a variety of strategies 1874 raffle tickets were sold in advance. 227 more tickets were sold at the door. How many tickets were sold altogether? $\begin{array}{r} 111 \\ 1874 \\ +227 \\ \hline 2101 \end{array}$
Observations/Documentation		

Activity 7 Assessment

Creating and Solving Problems

Conceptual Meaning of Whole Number Addition and Subtraction		
Recognizes addition and subtraction situations and models concretely to add or subtract to 1000 $148+223=?$	Models and symbolizes ways to solve problems to 1000 $148+223=?$	Uses an understanding of place value to decompose both numbers to solve problems to 10000 $\left.\begin{array}{rl} 896-345 & =? \\ 800-300 & =500 \\ 90-40 & = \\ 6-50 & 1 \end{array}\right\} 500+50+1=551$ "I subtracted the hundreds, the tens, and then the ones."
Observations/Documentation		

Activity 7 Assessment

Creating and Solving Problems

Conceptual Meaning of Whole Number Addition and Subtraction (cont'd)		
Uses an understanding of place value to add and subtract to 10000 using the standard algorithm $\begin{array}{r} 33^{1} 48 \\ +6548 \\ \hline 9896 \end{array}$ "I had 16 ones. So I traded 10 ones for 1 ten."	Estimates to determine if answer to problem is reasonable $896-345=?$ " 896 is close to 900.345 is close to 350 . $900-350=550.550$ is close to 551 , the answer I calculated, so my answer is reasonable."	Creates and solves addition and subtraction problems flexibly using a variety of strategies 1874 raffle tickets were sold in advance. 227 more tickets were sold at the door. How many tickets were sold altogether? $\begin{array}{r} 111 \\ 1874 \\ +227 \\ \hline 2101 \end{array}$
Observations/Documentation		

Activity 8 Assessment

Fluency with Addition and Subtraction Consolidation

Conceptual Meaning of Whole Number Addition and Subtraction		
Recognizes addition and subtraction situations and models concretely to add or subtract to 1000 $148+223=?$	Models and symbolizes ways to solve problems to 1000 $148+223=?$	Uses an understanding of place value to decompose both numbers to solve problems to 10000 $\left.\begin{array}{rl} 896-345 & =? \\ 800-300 & =500 \\ 90-40 & = \\ 6-50 & \\ 6-5 \end{array}\right\} 500+50+1=551$ "I subtracted the hundreds, the tens, and then the ones."
Observations/Documentation		

Activity 8 Assessment

Fluency with Addition and Subtraction Consolidation

Conceptual Meaning of Whole Number Addition and Subtraction (cont'd)		
Uses an understanding of place value to add and subtract to 10000 using the standard algorithm $\begin{array}{r} 3348 \\ +\quad 6548 \\ \hline 9896 \end{array}$ "I had 16 ones. So I traded 10 ones for 1 ten."	Estimates to determine if answer to problem is reasonable $896-345=?$ "896 is close to 900.345 is close to 350 $900-350=550.550$ is close to 551 , the answer I calculated, so my answer is reasonable."	Creates and solves addition and subtraction problems flexibly using a variety of strategies 1874 raffle tickets were sold in advance. 227 more tickets were sold at the door. How many tickets were sold altogether? $\begin{array}{r} 111 \\ 1874 \\ +227 \\ \hline 2101 \end{array}$
Observations/Documentation		

Activity 8 Assessment

Fluency with Addition and Subtraction Consolidation

Estimating Sums and Differences			
Uses front-end estimation Estimate: $28+46+177+158$ $20+40+100+100=260$ "I estimate about 260."	Uses rounding to write each number to the nearest ten Estimate: $28+46+177+158$ $30+50+180+160=420$ "I estimate about 420."	Uses rounding and compensation Estimate: $28+46+177+158$ I'll round two up and two down. $30+40+170+160=400$ "I estimate about 420."	Estimates flexibly to check reasonableness of solutions $3123+1248+4169+1150=9690$ Estimate to check: $123+169$ is about 300 , so $3123+4169$ is about 7300 . $248+150$ is about 400 , so $1248+1150$ is about 2400 . $7300+2400$ is 9700 . Since 9690 is close to 9700 , the solution seems reasonable.
Observations/Documentation			

\qquad

Number
Unit 3 Line Master 1a

Fraction Cards

\qquad

Fraction Cards (cont'd)

\qquad

Fraction Cards (cont'd)

Activity 9 Assessment

Exploring Equivalence in Fractions

Investigating Fractions		
Recognizes that equivalent fractions name the same quantity "If I partition each fourth into 2 equal parts, I see $\frac{3}{4}$ and $\frac{6}{8}$ are the same amount."	Identifies equivalent fractions using paper folding "I folded the rectangle in half and shaded one region. I folded it in half again to show $\frac{1}{2}=\frac{2}{4}$. I continued to fold the paper in half to show that $\frac{1}{2}$ also equals $\frac{4}{8}$ and $\frac{8}{16}$."	Names equivalent fractions by multiplying or dividing numerator and denominator by the same number $\frac{1}{4}: \frac{1 \times 3}{4 \times 3}=\frac{3}{12}$ "So, $\frac{3}{12}$ is equivalent to $\frac{1}{4}$."
Observations/Documentation		

Activity 9 Assessment

Exploring Equivalence in Fractions

Activity 10 Assessment

Equivalent Fractions

Investigating Fractions		
Recognizes that equivalent fractions name the same quantity "If I partition each fourth into 2 equal parts, I see $\frac{3}{4}$ and $\frac{6}{8}$ are the same amount."	Identifies equivalent fractions using paper folding "I folded the rectangle in half and shaded one region. I folded it in half again to show $\frac{1}{2}=\frac{2}{4}$. I continued to fold the paper in half to show that $\frac{1}{2}$ also equals $\frac{4}{8}$ and $\frac{8}{16}$."	Names equivalent fractions by multiplying or dividing numerator and denominator by the same number $\frac{1}{4}: \frac{1 \times 3}{4 \times 3}=\frac{3}{12}$ "So, $\frac{3}{12}$ is equivalent to $\frac{1}{4}$."
Observations/Documentation		

Activity 10 Assessment

Equivalent Fractions

Investigating Fractions (cont'd)		
Writes a fraction in simplest form $\frac{16}{20}: \frac{16 \div 4}{20 \div 4}=\frac{4}{5}$ " 4 and 5 have no common factors. So, $\frac{4}{5}$ is in simplest form."	Uses fraction sense (e.g., benchmarks) to compare fractions "I know $\frac{4}{6}$ is a little more than half, $\frac{8}{9}$ is pretty close to one whole, and $\frac{1}{8}$ is close to zero."	Compares and orders fractions using a variety of strategies (e.g., equivalent fractions) $\frac{5}{8}, \frac{3}{4}, \frac{1}{2}$: I wrote each fraction with denominator 8 . $\frac{3 \times 2}{4 \times 2}=\frac{6}{8} \text { and } \frac{1 \times 4}{2 \times 4}=\frac{4}{8} \text {; so, } \frac{1}{2}<\frac{5}{8}<\frac{3}{4}$
Observations/Documentation		

Activity 11 Assessment Comparing and Ordering Fractions

Investigating Fractions		
Recognizes that equivalent fractions name the same quantity "If I partition each fourth into 2 equal parts, I see $\frac{3}{4}$ and $\frac{6}{8}$ are the same amount."	Identifies equivalent fractions using paper folding "I folded the rectangle in half and shaded one region. I folded it in half again to show $\frac{1}{2}=\frac{2}{4}$. I continued to fold the paper in half to show that $\frac{1}{2}$ also equals $\frac{4}{8}$ and $\frac{8}{16}$."	Names equivalent fractions by multiplying or dividing numerator and denominator by the same number $\frac{1}{4}: \frac{1 \times 3}{4 \times 3}=\frac{3}{12}$ "So, $\frac{3}{12}$ is equivalent to $\frac{1}{4}$."
Observations/Documentation		

Activity 11 Assessment Comparing and Ordering Fractions

Investigating Fractions (cont'd)		
Writes a fraction in simplest form $\frac{16}{20}: \frac{16 \div 4}{20 \div 4}=\frac{4}{5}$ " 4 and 5 have no common factors. So, $\frac{4}{5}$ is in simplest form."	Uses fraction sense (e.g., benchmarks) to compare fractions "I know $\frac{4}{6}$ is a little more than half, $\frac{8}{9}$ is pretty close to one whole, and $\frac{1}{8}$ is close to zero."	Compares and orders fractions using a variety of strategies (e.g., equivalent fractions) $\frac{5}{8}, \frac{3}{4}, \frac{1}{2}$: I wrote each fraction with denominator 8 . $\frac{3 \times 2}{4 \times 2}=\frac{6}{8} \text { and } \frac{1 \times 4}{2 \times 4}=\frac{4}{8} ; \text { so, } \frac{1}{2}<\frac{5}{8}<\frac{3}{4}$
Observations/Documentation		

Activity 12 Assessment
 Fractions Consolidation

Investigating Fractions		
Recognizes that equivalent fractions name the same quantity "If I partition each fourth into 2 equal parts, I see $\frac{3}{4}$ and $\frac{6}{8}$ are the same amount."	Identifies equivalent fractions using paper folding "I folded the rectangle in half and shaded one region. I folded it in half again to show $\frac{1}{2}=\frac{2}{4}$. I continued to fold the paper in half to show that $\frac{1}{2}$ also equals $\frac{4}{8}$ and $\frac{8}{16}$."	Names equivalent fractions by multiplying or dividing numerator and denominator by the same number $\frac{1}{4}: \frac{1 \times 3}{4 \times 3}=\frac{3}{12}$ "So, $\frac{3}{12}$ is equivalent to $\frac{1}{4}$."
Observations/Documentation		

Activity 12 Assessment
 Fractions Consolidation

Investigating Fractions (cont'd)		
Writes a fraction in simplest form $\frac{16}{20}: \frac{16 \div 4}{20 \div 4}=\frac{4}{5}$ " 4 and 5 have no common factors. So, $\frac{4}{5}$ is in simplest form."	Uses fraction sense (e.g., benchmarks) to compare fractions "I know $\frac{4}{6}$ is a little more than half, $\frac{8}{9}$ is pretty close to one whole, and $\frac{1}{8}$ is close to zero."	Compares and orders fractions using a variety of strategies (e.g., equivalent fractions) $\frac{5}{8}, \frac{3}{4}, \frac{1}{2}$: I wrote each fraction with denominator 8 . $\frac{3 \times 2}{4 \times 2}=\frac{6}{8} \text { and } \frac{1 \times 4}{2 \times 4}=\frac{4}{8} ; \text { so, } \frac{1}{2}<\frac{5}{8}<\frac{3}{4}$
Observations/Documentation		

Exploring Tenths

\qquad

Number
Unit 4Line Master 2a Decimal Word Cards

\qquad

Number
Unit 4Line Master 2b Decimal Word Cards (cont'd)

Number
Unit 4 Line Master 3

Place-Value Mat
Hundredths

Hundreds	Tens	Ones	\bullet	Tenths	Hundredths

Exploring Hundredths

\qquad

Number
Unit 4 Line Master 5

Comparing Decimals

Number Unit 4 Line Master 6

Hundredths Grids

Number
Unit 4 Line Master 7

Hundredths Lines

\qquad

Number Unit 4 Line Master 8

The Grocery Store

\qquad
\qquad

Number
Unit 4 Line Master 9a

Spinners

(Decimals with Tenths)

Tenths

Ones
\qquad
\qquad

Number
Unit 4 Line Master 9b

Spinners

(Decimals with Hundredths)

Hundredths

Ones
\qquad
\qquad

Number
Unit 4 Line Master 10

Racetrack Number Line

\qquad
\qquad

Wind-Up Cars

Activity 13 Assessment

 Exploring Tenths| Exploring Decimals | | | |
| :---: | :---: | :---: | :---: |
| Relates visual representation of decimal with tenths to place value
 " 0.3 ; the digit in the tenth place is 3 because there are three tenths shaded." | Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids)
 " 1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater." | Relates visual representation of decimal with hundredths to place value
 " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths." | Compares and orders decimals with tenths and/or hundredths using a variety of strategies
 " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19 ." |
| Observations/Documentation | | | |
| | | | |

Activity 13 Assessment

Exploring Tenths

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth "2.29 is closer to 2.3 than to 2.2, so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 14 Assessment

 Exploring Hundredths| Exploring Decimals | | | |
| :---: | :---: | :---: | :---: |
| Relates visual representation of decimal with tenths to place value
 "0.3; the digit in the tenth place is 3 because there are three tenths shaded." | Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids)
 "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater." | Relates visual representation of decimal with hundredths to place value
 " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths." | Compares and orders decimals with tenths and/or hundredths using a variety of strategies
 " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19." |
| Observations/Documentation | | | |
| | | | |

Activity 14 Assessment

Exploring Hundredths

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth "2.29 is closer to 2.3 than to 2.2, so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 15 Assessment

 Comparing and Ordering Decimals| Exploring Decimals | | | |
| :---: | :---: | :---: | :---: |
| Relates visual representation of decimal with tenths to place value
 " 0.3 ; the digit in the tenth place is 3 because there are three tenths shaded." | Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids)
 "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater." | Relates visual representation of decimal with hundredths to place value
 " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths." | Compares and orders decimals with tenths and/or hundredths using a variety of strategies
 " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19." |
| Observations/Documentation | | | |
| | | | |

Activity 15 Assessment

Comparing and Ordering Decimals

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth " 2.29 is closer to 2.3 than to 2.2 , so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 16 Assessment

 Rounding Decimals| Exploring Decimals | | | |
| :---: | :---: | :---: | :---: |
| Relates visual representation of decimal with tenths to place value
 " 0.3 ; the digit in the tenth place is 3 because there are three tenths shaded." | Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids)
 "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater." | Relates visual representation of decimal with hundredths to place value
 " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths." | Compares and orders decimals with tenths and/or hundredths using a variety of strategies
 "1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19." |
| Observations/Documentation | | | |
| | | | |

Activity 16 Assessment

Rounding Decimals

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth "2.29 is closer to 2.3 than to 2.2, so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 17 Assessment

Relating Fractions and Decimals

Exploring Decimals			
Relates visual representation of decimal with tenths to place value "0.3; the digit in the tenth place is 3 because there are three tenths shaded."	Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids) "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater."	Relates visual representation of decimal with hundredths to place value " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths."	Compares and orders decimals with tenths and/or hundredths using a variety of strategies " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19."
Observations/Documentation			

Activity 17 Assessment

Relating Fractions and Decimals

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth " 2.29 is closer to 2.3 than to 2.2 , so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 18 Assessment

Investigating Percents

Exploring Decimals			
Relates visual representation of decimal with tenths to place value "0.3; the digit in the tenth place is 3 because there are three tenths shaded."	Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids) "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater."	Relates visual representation of decimal with hundredths to place value " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths."	Compares and orders decimals with tenths and/or hundredths using a variety of strategies " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19."
Observations/Documentation			

Activity 18 Assessment

Investigating Percents

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth "2.29 is closer to 2.3 than to 2.2, so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

Activity 19 Assessment

 Consolidating Decimals| Exploring Decimals | | | |
| :---: | :---: | :---: | :---: |
| Relates visual representation of decimal with tenths to place value
 "0.3; the digit in the tenth place is 3 because there are three tenths shaded." | Compares and orders decimals with tenths using a variety of strategies (e.g., benchmarks, grids)
 "1.9 > 1.6: both decimals have 1 whole, so I compare the tenths. Nine tenths is greater than 6 tenths, so 1.9 is greater." | Relates visual representation of decimal with hundredths to place value
 " 0.34 represents 3 tenths and 4 hundredths, or 34 hundredths." | Compares and orders decimals with tenths and/or hundredths using a variety of strategies
 " 1.35 > 1.19: both decimals have 1 whole, so I compare the tenths. Three tenths is greater than 1 tenth, so 1.35 is greater than 1.19." |
| Observations/Documentation | | | |
| | | | |

Activity 19 Assessment

Consolidating Decimals

Exploring Decimals (cont'd)			
Rounds decimals to the nearest whole number and/or tenth " 2.29 is closer to 2.3 than to 2.2 , so I round up to 2.3."	Expresses fractions as decimal numbers and vice versa, limited to tenths and hundredths "The Dairy section covers $\frac{8}{100}$ or 0.08 of the store."	Expresses the fraction, decimal, and percent representations for the same part-whole relationship "I know that $\frac{2}{5}$ is the same as four-tenths, which is the same as $0.4,0.40$, and 40%."	Compares percents within 100\% " $45 \%, 89 \%, 27 \%$: I know that 89% is greater than both 45% and 27%, because 8 tens is greater than both 4 tens and 2 tens."
Observations/Documentation			

\qquad

Number Unit 5 Line Master 1	cm Grid

\qquad
\qquad

Four in a Row

56	8	60	12	49	99	28	7	77	20
108	32	6	18	36	10	30	15	72	22
9	42	14	5	70	21	35	8	24	40
121	90	24	55	10	120	6	48	16	80
64	110	2	30	12	20	27	132	54	77
10	4	50	15	33	25	144	96	36	18
45	144	21	110	1	84	14	30	44	48
16	36	8	35	72	9	2	24	32	9
88	63	3	27	66	90	20	40	22	10
60	24	28	6	100	16	81	4	42	11

\qquad

Three in a Row

49	2	7	4	30	6	24
24	6	5	20	14	18	30
9	25	3	6	21	7	3
2	8	42	1	28	4	10
18	15	12	36	10	35	12
12	4	35	14	6	5	20
8	16	21	15	28	12	42

\qquad
\qquad

Number
Unit 5 Line Master 3
12×12 Multiplication Chart

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

\qquad

Prime or Composite?

Activity 20 Assessment

Factors and Multiples, and Prime and Composite Numbers

Determining Multiples and Factors		
Uses skip-counting or repeated addition to find multiples $4,8,12,16,20, \ldots$ "To find multiples of 4 , I skip counted by $4 . "$	Uses familiar basic facts to identify some multiples and factors $\begin{aligned} & 2 \times 4=8 \\ & 3 \times 4=12 \\ & 10 \times 4=40 \end{aligned}$ "I thought of the multiplication facts for 4 that I know."	Uses efficient strategies to determine multiples and identify all factors "To find factors of 8 , I start $8 \div 1=8$ Factors are 1 and 8. $8 \div 2=4$ Factors are 2 and 4. $\begin{aligned} & 8 \div 3=x \\ & 8 \div 4=2 \end{aligned}$ So, $1,2,4$, and 8 are all factors."
Observations/Documentation		

Activity 20 Assessment

Factors and Multiples, and Prime and Composite Numbers

Determining Multiples and Factors (cont'd)		
Uses concrete materials to identify prime and composite numbers " 7 is prime because it has only 2 factors, 1 and 7 . 12 is composite because it has more than 2 factors: 1 and 12,2 and 6 , and 3 and $4 . "$	Identifies common multiples/factors and greatest common factor for a pair of numbers Factors of 24: $\mathbf{1}, \underline{\mathbf{2}}, 3, \mathbf{4}, 6, \underline{\mathbf{8}}, 12,24$ Factors of 56: $\mathbf{1}, \underline{\mathbf{2}}, \underline{\mathbf{4}}, \mathbf{7}, \underline{\mathbf{8}}, 14,28,56$ "The greatest common factor is 8 ."	Solves problems involving common factors and multiples "Choir practice is every 5th day. Gymnastics is every 3rd day. That means choir and gymnastics both happen every 15th day."
Observations/Documentation		

Activity 21 Assessment

Relating Multiplication and Division Facts

Fluency of Multiplication and Division Facts			
Recalls and demonstrates multiplication and divisions facts to 5×5 "I know that $4 \times 6=24$ and that $24 \div 6=4$. The array shows both facts."	Uses inverse operations to solve multiplication and division problems "I can rewrite $24 \div 6=$? as $6 \times$? $=24$."	Uses known facts to determine unknown facts "I can use the distributive property to split the multiplication into facts that I know, then add." $\begin{gathered} 5 \times 9=\underline{5 \times 5}+\frac{5 \times 4}{25+20=45}, ~ \end{gathered}$	Fluently creates and solves whole number multiplication problems with factors to 12 and related division problems There are 96 basketballs with the same number on each of 12 shelves. $\begin{aligned} & 12 \times \square=96, \text { so } 96 \div 12=\square \\ & 12 \times 8=96 \\ & \text { Or } \\ & 12 \times 8=6 \times 8+6 \times 8 \\ &=48+48 \\ &=96 \end{aligned}$
Observations/Documentation			

Activity 22 Assessment

Fluency with Multiplication and Division Consolidation

Determining Multiples and Factors		
Uses skip-counting or repeated addition to find multiples $4,8,12,16,20, \ldots$ "To find multiples of 4, I skip counted by $4 . "$	Uses familiar basic facts to identify some multiples and factors $\begin{aligned} & 2 \times 4=8 \\ & 3 \times 4=12 \\ & 10 \times 4=40 \end{aligned}$ "I thought of the multiplication facts for 4 that I know."	Uses efficient strategies to determine multiples and identify all factors "To find factors of 8, I start $8 \div 1=8$ Factors are 1 and 8. $8 \div 2=4$ Factors are 2 and 4. $\begin{aligned} & 8 \div 3=x \\ & 8 \div 4=2 \end{aligned}$ So, $1,2,4$, and 8 are all factors."
Observations/Documentation		

Activity 22 Assessment

Fluency with Multiplication and Division Consolidation

Determining Multiples and Factors (cont'd)		
Uses concrete materials to identify prime and composite numbers " 7 is prime because it has only 2 factors, 1 and 7 . 12 is composite because it has more than 2 factors: 1 and 12,2 and 6 , and 3 and $4 . "$	Identifies common multiples/factors and greatest common factor for a pair of numbers Factors of 24: $\mathbf{1}, \underline{\mathbf{2}}, 3, \mathbf{4}, 6, \underline{8}, 12,24$ Factors of 56: $\underline{\mathbf{1}}, \underline{\mathbf{2}}, \underline{4}, \mathbf{7}, \underline{\mathbf{8}}, 14,28,56$ "The greatest common factor is 8 ."	Solves problems involving common factors and multiples "Choir practice is every 5th day. Gymnastics is every 3rd day. That means choir and gymnastics both happen every 15th day."
Observations/Documentation		

Activity 22 Assessment

Fluency with Multiplication and Division Consolidation

Fluency of Multiplication and Division Facts			
Recalls and demonstrates multiplication and divisions facts to 5×5 "I know that $4 \times 6=24$ and that $24 \div 6=4$. The array shows both facts."	Uses inverse operations to solve multiplication and division problems "I can rewrite $24 \div 6=$? as $6 \times$? $=24$."	Uses known facts to determine unknown facts "I can use the distributive property to split the multiplication into facts that I know, then add." $\begin{gathered} 5 \times 9=5 \times 5+\frac{5 \times 4}{25+20=45} \end{gathered}$	Fluently creates and solves whole number multiplication problems with factors to 12 and related division problems There are 96 basketballs with the same number on each of 12 shelves. $\left.\begin{array}{l} 12 \times \square=96, \text { so } 96 \div 12=\square \\ 12 \times 8 \end{array}\right)=96 \text { Or } \begin{aligned} 12 \times 8 & =6 \times 8+6 \times 8 \\ & =48+48 \\ & =96 \end{aligned}$
Observations/Documentation			

\qquad
\qquad

Number
Unit 6 Line Master 1a

Ring the Bell!
 Gameboard

\qquad
\qquad

Number
Unit 6 Line Master 1b

Ring the Bell! (cont'd)
Gameboard

Player A

Player B
\qquad

Number
Unit 6 Line Master 2a

Ring the Bell!
Game Cards

\qquad

Number
Unit 6 Line Master 2b

Ring the Bell! (cont'd) Game Cards

\qquad
\qquad

Marsh Dash!
Gameboard A

\qquad
\qquad

Number
Unit 6 Line Master 3b

Marsh Dash!

Gameboard B

\qquad
\qquad

Activity 23 Assessment
 Exploring Strategies for Multiplying

Conceptual Meaning of Multiplication and Division with Larger Numbers		
Models multiplication and division situations concretely and pictorially $6 \times 287=?$ "I traded groups of 10 rods for a flat."	Models multiplication and division situations using an open array$6 \times 287=?$287 200 80 7 1200 480 42 "I can use an open array to help me multiply."	Uses place value to multiply and divide natural numbers by 10, 100, and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$ "I used the associative property to make friendly numbers."
Observations/Documentation		

Activity 23 Assessment
 Exploring Strategies for Multiplying

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{gathered} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{gathered}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ " 1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

Activity 24 Assessment

Estimating Products

Conceptual Meaning of Multiplication and Division with Larger Numbers		
Models multiplication and division situations concretely and pictorially $6 \times 287=?$ "I traded groups of 10 rods for a flat."	Models multiplication and division situations using an open array$6 \times 287=?$287 200 80 7 61200 480 42 . "I can use an open array to help me multiply."	Uses place value to multiply and divide natural numbers by 10, 100, and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$ "I used the associative property to make friendly numbers."
Observations/Documentation		

Activity 24 Assessment

Estimating Products

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{array}{r} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{array}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ "1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

Activity 25 Assessment

Exploring Strategies for Dividing

Conceptual Meaning of Multiplication and Division with Larger Numbers		
Models multiplication and division situations concretely and pictorially $6 \times 287=?$ "I traded groups of 10 rods for a flat."	Models multiplication and division situations using an open array$6 \times 287=?$287200 80 7 61200 480 42 "I can use an open array to help me multiply."	Uses place value to multiply and divide natural numbers by 10,100 , and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$ "I used the associative property to make friendly numbers."
Observations/Documentation		

Activity 25 Assessment

Exploring Strategies for Dividing

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{array}{r} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{array}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ "1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

Activity 26 Assessment

Estimating Quotients

Conceptual Meaning of Multiplication and Division with Larger Numbers		
Models multiplication and division situations concretely and pictorially $6 \times 287=?$ "I traded groups of 10 rods for a flat."	Models multiplication and division situations using an open array$6 \times 287=?$287 200 80 7 1200 480 42 "I can use an open array to help me multiply."	Uses place value to multiply and divide natural numbers by 10, 100, and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$ "I used the associative property to make friendly numbers."
Observations/Documentation		

Activity 26 Assessment

Estimating Quotients

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{array}{r} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{array}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ " 1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

Activity 27 Assessment

 Dividing with Remainders| Conceptual Meaning of Multiplication and Division with Larger Numbers | | |
| :---: | :---: | :---: |
| Models multiplication and division situations concretely and pictorially $6 \times 287=\text { ? }$
 "I traded groups of 10 rods for a flat." | Models multiplication and division situations using an open array$6 \times 287=?$287
 200 80 7
 1200 480 42
 "I can use an open array to help me multiply." | Uses place value to multiply and divide natural numbers by 10,100 , and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$
 "I used the associative property to make friendly numbers." |
| Observations/Documentation | | |
| | | |

Activity 27 Assessment

Dividing with Remainders

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{array}{r} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{array}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ "1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

Activity 28 Assessment
 Consolidating Multiplying and Dividing Larger Numbers

Conceptual Meaning of Multiplication and Division with Larger Numbers		
Models multiplication and division situations concretely and pictorially $6 \times 287=?$ "I traded groups of 10 rods for a flat."	Models multiplication and division situations using an open array$6 \times 287=?$287 200 1200 6 80 7 "I can use an open array to help me multiply."	Uses place value to multiply and divide natural numbers by 10, 100, and 1000 $\begin{aligned} 34 \times 200 & =34 \times 2 \times 100 \\ & =68 \times 100 \\ & =6800 \end{aligned}$ "I used the associative property to make friendly numbers."
Observations/Documentation		

Activity 28 Assessment

Consolidating Multiplying and Dividing Larger Numbers

Conceptual Meaning of Multiplication and Division with Larger Numbers (cont'd)		
Decomposes numbers and uses standard algorithm to multiply and divide $\begin{array}{r} 6 \times 287=? \\ 54 \\ 287 \\ \times \quad 6 \\ \hline 1722 \end{array}$ "I used the standard algorithm to multiply the numbers."	Estimates to determine if answer to multiplication or division problem is reasonable $\begin{gathered} 6 \times 287=1722 \\ 287 \text { is close to } 300 . \\ 6 \times 300=1800 \end{gathered}$ "1800 is close to the answer I calculate, 1722. So, my answer is reasonable."	Creates and solves multiplication and division problems flexibly using a variety of strategies $123 \div 6=?$ "I counted 123 photographs to put in an album. Each page can hold 6 photographs. How many pages will I need?" $\begin{gathered} 20 \mathrm{R} 3 \\ 6 \longdiv { 1 2 3 } \\ \frac{120}{3} \end{gathered}$ "I round up to 21 pages to be sure all photos will fit."
Observations/Documentation		

\qquad
\qquad

Activity 29 Assessment

Estimating Sums and Differences with Decimals

Conceptual Meaning of Addition and Subtraction of Decimals		
Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to tenths $1.5-0.7=?$ " 15 tenths -7 tenths $=8$ tenths"	Uses an understanding of place value to add or subtract decimals with tenths (using standard algorithm) $\begin{gathered} 14.6+27.8=? \\ 11 \\ 14.6 \\ +27.8 \\ \hline 42.4 \end{gathered}$ "I used the standard algorithm, adding the tenths, then the whole numbers."	Models concretely or pictorially to add or subtract decimals with hundredths (e.g., using hundredths grids or Base Ten Blocks) $25.86-17.23=?$ $\begin{gathered} \text { "86 hundredths }-23 \text { hundredths }=63 \text { hundredths } \\ 25-17=8 \text { " } \\ 25.86-17.23=8.63 \end{gathered}$
Observations/Documentation		

Activity 29 Assessment

Estimating Sums and Differences with Decimals

Conceptual Meaning of Addition and Subtraction of Decimals (cont'd)		
Uses an understanding of place value to add or subtract decimals with hundredths (e.g., using standard algorithm) $\begin{array}{r} 11 \\ 2 \\ 2 \\ -17.26 \\ \hline 8.63 \end{array}$ "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers."	Uses estimation and mental math strategies to check reasonableness of solutions $\begin{gathered} 25.86-17.23=8.63 \\ 26-17=9 \end{gathered}$ " 8.63 is the answer I calculated, and it is close to 9 , so my answer is reasonable."	Solves addition and subtraction problems flexibly, using a variety of strategies A yoyo costs $\$ 7.35$. Jesse paid for it with $\$ 10$. How much change did Jesse get back? $\begin{aligned} & \$ 7.35+\$ 0.15=\$ 7.50 \\ & \$ 7.50+\$ 0.50=\$ 8.00 \\ & \$ 8.00+\$ 2.00=\$ 10.00 \\ & \$ 2.00+\$ 0.50+\$ 0.15=\$ 2.65 \\ & 9091 \\ & 70.00 \\ &-\quad 7.35 \end{aligned}$ "Jesse got $\$ 2.65$ back."
Observations/Documentation		

Activity 30 Assessment

Adding and Subtracting Decimals

Conceptual Meaning of Addition and Subtraction of Decimals		
Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to tenths $1.5-0.7=?$ " 15 tenths -7 tenths $=8$ tenths"	Uses an understanding of place value to add or subtract decimals with tenths (using standard algorithm) $\begin{gathered} 14.6+27.8=? \\ 11 \\ 14.6 \\ +27.8 \\ \hline 42.4 \end{gathered}$ "I used the standard algorithm, adding the tenths, then the whole numbers."	Models concretely or pictorially to add or subtract decimals with hundredths (e.g., using hundredths grids or Base Ten Blocks) $25.86-17.23=?$ "86 hundredths -23 hundredths $=63$ hundredths $25-17=8 "$ $25.86-17.23=8.63$
Observations/Documentation		

Activity 30 Assessment

Adding and Subtracting Decimals

Conceptual Meaning of Addition and Subtraction of Decimals (cont'd)		
Uses an understanding of place value to add or subtract decimals with hundredths (e.g., using standard algorithm) $\begin{array}{r} 11 \\ 25.86 \\ -17.23 \\ \hline 8.63 \end{array}$ "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers."	Uses estimation and mental math strategies to check reasonableness of solutions $\begin{gathered} 25.86-17.23=8.63 \\ 26-17=9 \end{gathered}$ " 8.63 is the answer I calculated, and it is close to 9 so my answer is reasonable."	Solves addition and subtraction problems flexibly, using a variety of strategies A yoyo costs $\$ 7.35$ Jesse paid for it with $\$ 10$. How much change did Jesse get back? $\begin{gathered} \$ 7.35+\$ 0.15=\$ 7.50 \\ \$ 7.50+\$ 0.50=\$ 8.00 \\ \$ 8.00+\$ 2.00=\$ 10.00 \\ \$ 2.00+\$ 0.50+\$ 0.15=\$ 2.65 \\ 9.91 \\ -\quad 7.005 \\ \hline 2.65 \end{gathered}$ "Jesse got $\$ 2.65$ back."
Observations/Documentation		

Activity 31 Assessment

Operations with Decimals Consolidation

Conceptual Meaning of Addition and Subtraction of Decimals		
Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to tenths $1.5-0.7=?$ " 15 tenths -7 tenths $=8$ tenths"	Uses an understanding of place value to add or subtract decimals with tenths (using standard algorithm) $\begin{gathered} 14.6+27.8=? \\ 11 \\ 14.6 \\ +27.8 \\ \hline 42.4 \end{gathered}$ "I used the standard algorithm, adding the tenths, then the whole numbers."	Models concretely or pictorially to add or subtract decimals with hundredths (e.g., using hundredths grids or Base Ten Blocks) $25.86-17.23=?$ " 86 hundredths -23 hundredths $=63$ hundredths $25-17=8$ " $25.86-17.23=8.63$
Observations/Documentation		

Activity 31 Assessment

Operations with Decimals Consolidation

Conceptual Meaning of Addition and Subtraction of Decimals (cont'd)		
Uses an understanding of place value to add or subtract decimals with hundredths (e.g., using standard algorithm) $\begin{array}{r} 11 \\ 2 \\ 2 \\ -17.26 \\ \hline 8.63 \end{array}$ "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers."	Uses estimation and mental math strategies to check reasonableness of solutions $\begin{gathered} 25.86-17.23=8.63 \\ 26-17=9 \end{gathered}$ " 8.63 is the answer I calculated, and it is close to 9 , so my answer is reasonable."	Solves addition and subtraction problems flexibly, using a variety of strategies A yoyo costs $\$ 7.35$. Jesse paid for it with $\$ 10$. How much change did Jesse get back? $\begin{aligned} & \$ 7.35+\$ 0.15=\$ 7.50 \\ & \$ 7.50+\$ 0.50=\$ 8.00 \\ & \$ 8.00+\$ 2.00=\$ 10.00 \\ & \$ 2.00+\$ 0.50+\$ 0.15=\$ 2.65 \\ & 9091 \\ & 70.00 \\ &-\quad 7.35 \end{aligned}$ "Jesse got $\$ 2.65$ back."
Observations/Documentation		

\qquad
\qquad

Number
Unit 8 Line Master 1
Can I Buy It?

Recording Sheet

\qquad as a class goal because

Event from Game	Earnings (Add)	Spending (Subtract)	Savings Balance
			$\$ 50$
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			
Final Balance			

How did the decisions you made affect the amount you save?
\qquad
\qquad

Number
Unit 8 Line Master 2a

Can I Buy It?

Gameboard (Decimal Amounts)

\qquad
\qquad

Number
Unit 8 Line Master 2b

Can I Buy It? (cont'd)
Gameboard (Whole-Dollar Amounts)

\qquad
\qquad

Number
Unit 8 Line Master 3

Money Adventure Gameboard

\qquad
\qquad

Number
Unit 8 Line Master 4a
Money Adventures Game Cards
Receive a gift of $\$ 25$ for your birthday.

Purchase a TV for $\$ 875$.
Would you use debit or credit?
Add it to your bank account or pay off credit?
Mow your neighbors lawn and receive $\$ 20$.

Add it to your bank account or pay off credit?

Purchase a $\$ 12$ lunch at the mall.

Would you use debit or credit?
Receive an e-transfer of \$35 for your allowance.

Purchase $\$ 45$ jeans from an online store.

Add it to your bank account or pay off credit?
Take the bottles to the Bottle Depot and receive $\$ 18$.

Add it to your bank account or pay off credit?

Pay $\$ 85$ for groceries.
Would you use debit or credit?

Purchase a sofa for $\$ 655$.
Would you use debit or credit?

Receive an e-transfer for selling a bike at a garage sale for $\$ 55$.

Receive a $\$ 40$ refund on your credit card for returning an online purchase.

Make a cash withdrawal of $\$ 50$.
Would you use debit or credit?
\qquad
\qquad

Number
 Unit 8 Line Master 4b
 Money Adventures Game Cards

Pay $\$ 35$ for new bicycle tire.

Would you use debit or credit?

Oh no! Your credit card is past due. Pay the bank $\$ 10$ for every $\$ 100$ currently on your card.
Add this amount to your debt.
Hurray! You earn \$20 interest for every hundred dollars in your bank account.
Add this amount to your bank account balance. Debt Alert!
If you have money owing on your credit card, pay at least half of it using your bank account.

Donate $\$ 20$ to a charity of your choice.
Subtract this amount from your bank account balance.

Check your balance.

If you owe more than \$500 on your credit card, move back two spaces!

Receive $\$ 30$ in cash for shovelling the driveway.

Add it to your bank account or pay off credit?
It's the first of the month. Pay the bank $\$ 15$ dollars as your monthly service fee.
Subtract \$15 from your bank account balance.

Check your balance.

If your credit card balance is $\$ 0$, move ahead two spaces!

Check your balance.

If you owe more than $\$ 500$ on your credit card, move back two spaces!

Check your balance.

If you want, you can pay off any amount owing on your credit card from your bank account.

Donate $\$ 15$ to a charity of your choice.
Subtract this amount from your bank account balance.
\qquad

Number
 Unit 8 Line Master 4c
 Money Adventures Game Cards (Blank)

Activity 32 Assessment

Using Currency for Financial Transactions

Factors That Influence Spending		
Recognizes currency as one of the various forms of money "Currency is money in the form of paper and coins issued by a government. The currency used in different countries may vary."	Considers factors influencing spending "I am saving for a new bicycle, so I am trying not to spend money unless it is really necessary."	Recognizes the difference between credit and debit (and their implications) "Using debit, the money comes out of an account right away. Using credit, you borrow money and pay back later. If you don't pay back on time, interest is charged."
Observations/Documentation		

Activity 32 Assessment

Using Currency for Financial Transactions

Factors That Influence Spending (cont'd)			
Makes informed decisions regarding purchases "I like both pairs of shoes. I will purchase the ones that are a litte more expensive because they are of better quality and will last longer."	Identifies different banking practices and their purposes "There are two types of accounts: savings and chequing. Money is deposited into a savings account and interest is paid. Money can be put into and taken out of a chequing account and no interest is paid."	Flexibly applies various banking practices in different contexts "I would want a bank account that has unlimited transactions and no monthly fees. It would be good if it also paid interest."	
Observations/Documentation			

Activity 33 Assessment

Making Good Purchases

Factors That Influence Spending		
Recognizes currency as one of the various forms of money "Currency is money in the form of paper and coins issued by a government. The currency used in different countries may vary."	Considers factors influencing spending "I am saving for a new bicycle, so I am trying not to spend money unless it is really necessary."	Recognizes the difference between credit and debit (and their implications) "Using debit, the money comes out of an account right away. Using credit, you borrow money and pay back later. If you don't pay back on time, interest is charged."
Observations/Documentation		

Activity 33 Assessment

Making Good Purchases

Factors That Influence Spending (cont'd)		
Makes informed decisions regarding purchases "I like both pairs of shoes. I will purchase the ones that are a little more expensive because they are of better quality and will last longer."	Identifies different banking practices and their purposes "There are two types of accounts: savings and chequing. Money is deposited into a savings account and interest is paid. Money can be put into and taken out of a chequing account and no interest is paid."	Flexibly applies various banking practices in different contexts "I would want a bank account that has unlimited transactions and no monthly fees. It would be good if it also paid interest."
Observations/Documentation		

Activity 34 Assessment Exploring Banking Practices

Factors That Influence Spending		
Recognizes currency as one of the various forms of money "Currency is money in the form of paper and coins issued by a government. The currency used in different countries may vary."	Considers factors influencing spending "I am saving for a new bicycle, so I am trying not to spend money unless it is really necessary."	Recognizes the difference between credit and debit (and their implications) "Using debit, the money comes out of an account right away. Using credit, you borrow money and pay back later. If you don't pay back on time, interest is charged."
Observations/Documentation		

Activity 34 Assessment
 Exploring Banking Practices

Factors That Influence Spending (cont'd)		
Makes informed decisions regarding purchases "I like both pairs of shoes. I will purchase the ones that are a little more expensive because they are of better quality and will last longer."	Identifies different banking practices and their purposes "There are two types of accounts: savings and chequing. Money is deposited into a savings account and interest is paid. Money can be put into and taken out of a chequing account and no interest is paid."	Flexibly applies various banking practices in different contexts "I would want a bank account that has unlimited transactions and no monthly fees. It would be good if it also paid interest."
Observations/Documentation		

Activity 35 Assessment Consolidation

$\left.\begin{array}{|l|l|l|l|}\hline \text { Factors That Influence Spending } \\ \begin{array}{l}\text { Recognizes currency as one of the various } \\ \text { forms of money } \\ \text { "Currency is money in the form of paper and } \\ \text { coins issued by a government. The currency } \\ \text { used in different countries may vary." }\end{array} & \begin{array}{l}\text { Considers factors influencing spending } \\ \text { "I am saving for a new bicycle, sol am trying not } \\ \text { to spend money unless it is really necessary." }\end{array} & \begin{array}{l}\text { Recognizes the difference between credit and } \\ \text { debit (and their implications) }\end{array} \\ \text { "Using debit, the money comes out of an account } \\ \text { right away. Using credit, you borrow money and } \\ \text { pay back later. If you don't pay back on time, } \\ \text { interest is charged." }\end{array}\right\}$

Activity 35 Assessment Consolidation

Factors That Influence Spending (cont'd)		
Makes informed decisions regarding purchases "I like both pairs of shoes. I will purchase the ones that are a little more expensive because they are of better quality and will last longer."	Identifies different banking practices and their purposes "There are two types of accounts: savings and chequing. Money is deposited into a savings account and interest is paid. Money can be put into and taken out of a chequing account and no interest is paid."	Flexibly applies various banking practices in different contexts "I would want a bank account that has unlimited transactions and no monthly fees. It would be good if it also paid interest."
Observations/Documentation		

\qquad Date

Flower Patterns

Number of Flowers	Number of Blocks Used	Number of Blocks Used
1		
2		
3		
4		
5		

\qquad

Roll a Sequence! Game Cards

Patterning and Algebra

Activity 1 Assessment
 Investigating Unique Sequences

Investigating Increasing and Decreasing Sequences			
Recognizes increasing and decreasing sequences in multiple representations. "That is an increasing sequence because the number of happy faces increases with each term."	Creates and explains increasing and decreasing sequences, including numerical sequences. "The happy faces form equilateral triangles. We start with 1 happy face, add 2 happy faces, then increase the number added by 1 each time."	Expresses a concrete or pictorial sequence as a number sequence. "The number sequence is: $1,3,6,10, \ldots "$	Recognizes and describes increasing and decreasing arithmetic sequences. $1,3,5,7, \ldots$ "This is an increasing arithmetic sequence as 2 is added each time. Initial term: 1. Constant change: Add 2."
Observations/Documentation			

Patterning and Algebra

Activity 1 Assessment
 Investigating Unique Sequences

Investigating Increasing and Decreasing Sequences (cont'd)			
Writes the first 5 terms of an arithmetic sequence given the initial term and constant change. "Initial term: 30. Constant change: Subtract 3 . $30,27,24,21,18, \ldots$.	Recognizes and describes increasing and decreasing geometric sequences. $2,4,8,16,32, \ldots$ "This is an increasing geometric sequence as a term is multiplied by 2 to get the next term. Initial term: 2. Constant change: Multiply by 2 ."	Writes the first 5 terms of a geometric sequence given the initial term and constant change. "Initial term: 2. Constant change: Multiply by 3. $2,6,18,54,162, \ldots$	Fluently recognizes and describes different increasing and decreasing sequences and uses them to solve problems. It takes Sami 40 min to make 1 bracelet. How many bracelets can Sami make in 4 h ? "This is an increasing arithmetic sequence. Initial term: 40. Constant change: +40 . $40,80,120,160,200,240$ $4 \mathrm{~h}=240 \mathrm{~min}$ Sami can make 6 bracelets. "
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 2 Assessment
 Investigating Increasing and Decreasing Arithmetic Sequences

Investigating Increasing and Decreasing Sequences			
Recognizes increasing and decreasing sequences in multiple representations. "That is an increasing sequence because the number of happy faces increases with each term."	Creates and explains increasing and decreasing sequences, including numerical sequences. "The happy faces form equilateral triangles. We start with 1 happy face, add 2 happy faces, then increase the number added by 1 each time."	Expresses a concrete or pictorial sequence as a number sequence. "The number sequence is: $1,3,6,10, \ldots "$	Recognizes and describes increasing and decreasing arithmetic sequences. $1,3,5,7, \ldots$ "This is an increasing arithmetic sequence as 2 is added each time. Initial term: 1. Constant change: Add 2."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 2 Assessment
 Investigating Increasing and Decreasing Arithmetic Sequences

Investigating Increasing and Decreasing Sequences (cont'd)			
Writes the first 5 terms of an arithmetic sequence given the initial term and constant change. "Initial term: 30 . Constant change: Subtract 3 . $30,27,24,21,18, \ldots$ "	Recognizes and describes increasing and decreasing geometric sequences. $2,4,8,16,32, \ldots$ "This is an increasing geometric sequence as a term is multiplied by 2 to get the next term. Initial term: 2. Constant change: Multiply by 2."	Writes the first 5 terms of a geometric sequence given the initial term and constant change. "Initial term: 2. Constant change: Multiply by 3. $2,6,18,54,162, \ldots "$	Fluently recognizes and describes different increasing and decreasing sequences and uses them to solve problems. It takes Sami 40 min to make 1 bracelet. How many bracelets can Sami make in 4 h ? "This is an increasing arithmetic sequence. Initial term: 40. Constant change: +40 . $40,80,120,160,200,240$ $4 \mathrm{~h}=240 \mathrm{~min}$ Sami can make 6 bracelets. "
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 3 Assessment

Representing Arithmetic Sequences

Investigating Increasing and Decreasing Sequences			
Recognizes increasing and decreasing sequences in multiple representations. "That is an increasing sequence because the number of happy faces increases with each term."	Creates and explains increasing and decreasing sequences, including numerical sequences. "The happy faces form equilateral triangles. We start with 1 happy face, add 2 happy faces, then increase the number added by 1 each time."	Expresses a concrete or pictorial sequence as a number sequence. "The number sequence is: $1,3,6,10, \ldots "$	Recognizes and describes increasing and decreasing arithmetic sequences. $1,3,5,7, \ldots$ "This is an increasing arithmetic sequence as 2 is added each time. Initial term: 1. Constant change: Add 2."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 3 Assessment

Representing Arithmetic Sequences

Investigating Increasing and Decreasing Sequences (cont'd)			
Writes the first 5 terms of an arithmetic sequence given the initial term and constant change. "Initial term: 30 . Constant change: Subtract 3 . $30,27,24,21,18, \ldots$ "	Recognizes and describes increasing and decreasing geometric sequences. $2,4,8,16,32, \ldots$ "This is an increasing geometric sequence as a term is multiplied by 2 to get the next term. Initial term: 2. Constant change: Multiply by 2."	Writes the first 5 terms of a geometric sequence given the initial term and constant change. "Initial term: 2. Constant change: Multiply by 3. $2,6,18,54,162, \ldots "$	Fluently recognizes and describes different increasing and decreasing sequences and uses them to solve problems. It takes Sami 40 min to make 1 bracelet. How many bracelets can Sami make in 4 h ? "This is an increasing arithmetic sequence. Initial term: 40. Constant change: +40 . $40,80,120,160,200,240$ $4 \mathrm{~h}=240 \mathrm{~min}$ Sami can make 6 bracelets. "
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 4 Assessment

Investigating Increasing and Decreasing Geometric Sequences

Investigating Increasing and Decreasing Sequences			
Recognizes increasing and decreasing sequences in multiple representations. "That is an increasing sequence because the number of happy faces increases with each term."	Creates and explains increasing and decreasing sequences, including numerical sequences. "The happy faces form equilateral triangles. We start with 1 happy face, add 2 happy faces, then increase the number added by 1 each time."	Expresses a concrete or pictorial sequence as a number sequence. "The number sequence is: $1,3,6,10, \ldots$ "	Recognizes and describes increasing and decreasing arithmetic sequences. $1,3,5,7, \ldots$ "This is an increasing arithmetic sequence as 2 is added each time. Initial term: 1. Constant change: Add 2."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 4 Assessment

Investigating Increasing and Decreasing Geometric Sequences

Investigating Increasing and Decreasing Sequences (cont'd)			
Writes the first 5 terms of an arithmetic sequence given the initial term and constant change. "Initial term: 30 . Constant change: Subtract 3 . $30,27,24,21,18, \ldots$ "	Recognizes and describes increasing and decreasing geometric sequences. $2,4,8,16,32, \ldots$ "This is an increasing geometric sequence as a term is multiplied by 2 to get the next term. Initial term: 2. Constant change: Multiply by 2."	Writes the first 5 terms of a geometric sequence given the initial term and constant change. "Initial term: 2. Constant change: Multiply by 3. $2,6,18,54,162, \ldots "$	Fluently recognizes and describes different increasing and decreasing sequences and uses them to solve problems. It takes Sami 40 min to make 1 bracelet. How many bracelets can Sami make in 4 h ? "This is an increasing arithmetic sequence. Initial term: 40. Constant change: +40 . $40,80,120,160,200,240$ $4 \mathrm{~h}=240 \mathrm{~min}$ Sami can make 6 bracelets. "
Observations/Documentation			

Patterning and Algebra

Activity 5 Assessment Consolidation

Investigating Increasing and Decreasing Sequences			
Recognizes increasing and decreasing sequences in multiple representations. "That is an increasing sequence because the number of happy faces increases with each term."	Creates and explains increasing and decreasing sequences, including numerical sequences. "The happy faces form equilateral triangles. We start with 1 happy face, add 2 happy faces, then increase the number added by 1 each time."	Expresses a concrete or pictorial sequence as a number sequence. "The number sequence is: $1,3,6,10, \ldots "$	Recognizes and describes increasing and decreasing arithmetic sequences. $1,3,5,7, \ldots$ "This is an increasing arithmetic sequence as 2 is added each time. Initial term: 1. Constant change: Add 2."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 5 Assessment Consolidation

Investigating Increasing and Decreasing Sequences (cont'd)			
Writes the first 5 terms of an arithmetic sequence given the initial term and constant change. "Initial term: 30 . Constant change: Subtract 3 . $30,27,24,21,18, \ldots$ "	Recognizes and describes increasing and decreasing geometric sequences. $2,4,8,16,32, \ldots$ "This is an increasing geometric sequence as a term is multiplied by 2 to get the next term. Initial term: 2. Constant change: Multiply by 2."	Writes the first 5 terms of a geometric sequence given the initial term and constant change. "Initial term: 2. Constant change: Multiply by 3. $2,6,18,54,162, \ldots "$	Fluently recognizes and describes different increasing and decreasing sequences and uses them to solve problems. It takes Sami 40 min to make 1 bracelet. How many bracelets can Sami make in 4 h ? "This is an increasing arithmetic sequence. Initial term: 40. Constant change: +40 . 40, 80, 120, 160, 200, 240 $4 \mathrm{~h}=240 \mathrm{~min}$ Sami can make 6 bracelets. "
Observations/Documentation			

\qquad
\qquad

Make a Match!

Picture	Statement	Expression or Equation
	8 plus a number is equal to 9	
	2 times a number	
	4 times a number is equal to 16	
	6 divided by a number is equal to 2	
	A number plus 3	
	A number minus 8	

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 2 Solving Equations

$\square+3=11$	$8-\square=2$
$3=\square-7$	$12=\square+5$
8 added to a number is equal to 15. What is the number?	12 minus a number is equal to 8 . What is the number?
9 is equal to 4 plus a number. What is the number?	5 is equal to 12 minus a number. What is the number?

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 3 Equation Cards

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 4 Three in a Row Gameboard

7	9	42	2
5	25	8	11
36	1	10	4
12	3	21	6

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 5

Consolidation Chart

\qquad
\qquad Representations

1	2
3	4

```
Patterning and Algebra
```


Activity 6 Assessment
 Investigating Equality and the Order of Operations

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10 .
Observations/Documentation		

```
Patterning and Algebra
```


Activity 6 Assessment

Investigating Equality and the Order of Operations

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ - & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate *."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ \square & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

```
Patterning and Algebra
```


Activity 7 Assessment Using Symbols

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10."
Observations/Documentation		

Patterning and

 AlgebraActivity 7 Assessment Using Symbols

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate *."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

```
Patterning and Algebra
```


Activity 8 Assessment

 Solving Equations Concretely| Variables and Equations | | |
| :---: | :---: | :---: |
| Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$
 "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1." | Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$
 "All of these expressions have value 25 ." | Represents balance using concrete materials
 "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10." |
| Observations/Documentation | | |
| | | |

Patterning and Algebra

Activity 8 Assessment Solving Equations Concretely

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate \downarrow."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ \square & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

Patterning and Algebra

Activity 9 Assessment

Solving Addition and Subtracting Equations

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10."
Observations/Documentation		

Patterning and Algebra

Activity 9 Assessment

Solving Addition and Subtracting Equations

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate \downarrow."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ \square & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

```
Patterning and
Algebra
```


Activity 10 Assessment

```
Solving Multiplication and Division Equations
```

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10."
Observations/Documentation		

Patterning and Algebra

Activity 10 Assessment

Solving Multiplication and Division Equations

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate *."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

Activity 11 Assessment
 Using Equations to Solve Problems

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10."
Observations/Documentation		

Patterning and Algebra

Activity 11 Assessment

Using Equations to Solve Problems

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate *."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

```
Patterning and Algebra
```


Activity 12 Assessment Consolidation

Variables and Equations		
Evaluates a given expression (using the order of operations) $\begin{aligned} 9 \times 8-3+16 \div 4 & =72-3+4 \\ & =73 \end{aligned}$ "I have to do multiplication and division first. If the order isn't followed and I perform the operations in the order in which they appear, I get 21 R1."	Writes equivalent expressions (for the same number) $5 \times 5,30 \div 2+10,3 \times 5+2 \times 6-2$ "All of these expressions have value 25 ."	Represents balance using concrete materials "The expressions $5+5$ and 2×5 are equivalent because the pans are balanced. Both have value 10."
Observations/Documentation		

Activity 12 Assessment Consolidation

Variables and Equations (cont'd)		
Represents preservation of equality symbolically (with or without an unknown) $4+2=5+1$ "I added 2 to each side to keep the balance."	Finds the unknown value in an equation representing a situation $\begin{aligned} -8 & =6 \\ +8-8 & =6+8 \\ * & =14 \end{aligned}$ "I added 8 to each side to preserve equality and to isolate \downarrow."	Solves problems using equations "I have 2 sets of cards, with the same number of cards in each set. I have 24 cards. How many cards are in each set?" "Let ■ represent the number of cards in each set." $\begin{aligned} 2 ■ & =24 \\ 2 ■ \div 2 & =24 \div 2 \\ \square & =12 \end{aligned}$ "There are 12 cards in each set."
Observations/Documentation		

Measurement
Unit 1 Line Master 1
Blank 6-by-5 Loom Templates

Original Design:

New Designs:

Measurement
Unit 1 Line Master 2

Blank 5-by-5 Loom Templates

Measurement
Unit 1 Line Master 3
Blank 6-by-20 Loom Templates

Measurement
Unit 1 Line Master 4

Blank 5-by-20 Loom Templates

Measurement
Unit 1 Line Master 5a

Blank 2-by-3 Loom Templates

Measurement
Unit 1 Line Master 5b
Blank 5-by-4 Loom Templates

\qquad
\qquad

Paper Rectangles

A

C
\qquad Date \qquad

Unit 1 Line Master 7a

Cover Me!

Name

\qquad Date \qquad

Unit 1 Line Master 7b

Cover Me!

Name

\qquad Date \qquad

Cover Me!

Name

\qquad Date \qquad

Unit 1 Line Master 7d

Cover Me!

\qquad

Measurement
Unit 1 Line Master 8b

What's the Area? (cont'd)

Name \qquad Date \qquad

What's the Area?
Recording Sheet

Shape	Estimated Area (cm ${ }^{2}$)	Measured Area (cm ${ }^{2}$)
A		
B		
C		
D		
E		
F		
G		

Activity 1 Assessment

Investigating Area in First Nations, Métis, and Inuit Designs

Investigating Area in First Nations, Métis, and Inuit Designs		
Describes materials used in some First Nations, Métis, and Inuit designs "I see leather, birch bark, beads, fur, and porcupine quills."	Explains how designers might come up with their designs "They might have got ideas from nature, symbols, ceremony, culture, stories, and family."	Understands how the gathering of materials shows respect of animals and the natural world "When gathering materials, thanks is offered to the animal or natural object that will be used."
Observations/Documentation		

Activity 1 Assessment

Investigating Area in First Nations, Métis, and Inuit Designs

Investigating Area in First Nations, Métis, and Inuit Designs (cont'd)		
Describes how the use of materials in designs shows respect for animals and the natural world "All parts of the animal are used; for example, for food, clothing, ceremony, shelter."	Describes various types of traditional styles of design "Different styles include bead embroidery, bead stringing, off-loom bead weaving, braiding with beads, and loom beading."	Shows that rearranging beads on a loom template does not change the number of beads needed to complete a design "They use the same number of each colour of bead."
Observations/Documentation		

Activity 2 Assessment

Measuring Area Using Non-Standard Units

Activity 2 Assessment

Measuring Area Using Non-Standard Units

Investigating, Estimating, and Measuring Area (cont'd)			
Uses referents to estimate area, then measures to check Shape A "I used my fingernail as a referent for $1 \mathrm{~cm}^{2}$. I estimated the area of Shape A to be $14 \mathrm{~cm}^{2}$. Then I measured to check and the area was $16 \mathrm{~cm}^{2}$."	Uses row and column structure of an array to determine area of a rectangle "I traced the rectangle on a 1-cm grid where each square represents $1 \mathrm{~cm}^{2}$. The rectangle forms an array with 4 rows of 6 squares: $4 \times 6=24$; the area of the rectangle is $24 \mathrm{~cm}^{2}$.	Constructs different rectangles for a given area (square centimetres) Area of rectangle $=16 \mathrm{~cm}^{2}$ "I constructed 3 different rectangles: A square with side length 4 cm : $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2} .$ A $2-\mathrm{cm}$ by $8-\mathrm{cm}$ rectangle: $2 \mathrm{~cm} \times 8 \mathrm{~cm}=16 \mathrm{~cm}^{2}$ A $1-\mathrm{cm}$ by $16-\mathrm{cm}$ rectangle: $1 \mathrm{~cm} \times 16 \mathrm{~cm}=16 \mathrm{~cm}^{2}$."	Flexibly determines the area of shapes, including rectangles, and solves problems A baseball ticket has an area of $75 \mathrm{~cm}^{2}$. The ticket is 5 cm wide. How long is it? "I know $A=I \times w$, so I solved the equation $75=1 \times 5$. I know $15 \times 5=75$, so the ticket is 15 cm long."
Observations/Documentation			

Activity 3 Assessment

Estimating and Measuring Area in Square Centimetres

Activity 3 Assessment

Estimating and Measuring Area in Square Centimetres

Investigating, Estimating, and Measuring Area (cont'd)			
Uses referents to estimate area, then measures to check "I used my fingernail as a referent for $1 \mathrm{~cm}^{2}$. I estimated the area of Shape A to be $14 \mathrm{~cm}^{2}$. Then I measured to check and the area was $16 \mathrm{~cm}^{2}$."	Uses row and column structure of an array to determine area of a rectangle "I traced the rectangle on a 1-cm grid where each square represents $1 \mathrm{~cm}^{2}$. The rectangle forms an array with 4 rows of 6 squares: $4 \times 6=24$; the area of the rectangle is $24 \mathrm{~cm}^{2}$.	Constructs different rectangles for a given area (square centimetres) Area of rectangle $=16 \mathrm{~cm}^{2}$ \square "I constructed 3 different rectangles: A square with side length 4 cm : $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2} .$ A $2-\mathrm{cm}$ by $8-\mathrm{cm}$ rectangle: $2 \mathrm{~cm} \times 8 \mathrm{~cm}=16 \mathrm{~cm}^{2} .$ A $1-\mathrm{cm}$ by $16-\mathrm{cm}$ rectangle: $1 \mathrm{~cm} \times 16 \mathrm{~cm}=16 \mathrm{~cm}^{2}$."	Flexibly determines the area of shapes, including rectangles, and solves problems A baseball ticket has an area of $75 \mathrm{~cm}^{2}$. The ticket is 5 cm wide. How long is it? "I know $A=I \times w$, so I solved the equation $75=1 \times 5$. I know $15 \times 5=75$, so the ticket is 15 cm long."
Observations/Documentation			

Activity 4 Assessment

Exploring Area of Rectangles

Activity 4 Assessment

Exploring Area of Rectangles

Investigating, Estimating, and Measuring Area (cont'd)			
Uses referents to estimate area, then measures to check Shape A "I used my fingernail as a referent for $1 \mathrm{~cm}^{2}$. I estimated the area of Shape A to be $14 \mathrm{~cm}^{2}$. Then I measured to check and the area was $16 \mathrm{~cm}^{2}$."	Uses row and column structure of an array to determine area of a rectangle "I traced the rectangle on a 1-cm grid where each square represents $1 \mathrm{~cm}^{2}$. The rectangle forms an array with 4 rows of 6 squares: $4 \times 6=24$; the area of the rectangle is $24 \mathrm{~cm}^{2}$.	Constructs different rectangles for a given area (square centimetres) Area of rectangle $=16 \mathrm{~cm}^{2}$ "I constructed 3 different rectangles: A square with side length 4 cm : $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2} .$ A $2-\mathrm{cm}$ by $8-\mathrm{cm}$ rectangle: $2 \mathrm{~cm} \times 8 \mathrm{~cm}=16 \mathrm{~cm}^{2}$ A $1-\mathrm{cm}$ by $16-\mathrm{cm}$ rectangle: $1 \mathrm{~cm} \times 16 \mathrm{~cm}=16 \mathrm{~cm}^{2}$."	Flexibly determines the area of shapes, including rectangles, and solves problems A baseball ticket has an area of $75 \mathrm{~cm}^{2}$. The ticket is 5 cm wide. How long is it? "I know $A=I \times w$, so I solved the equation $75=1 \times 5$. I know $15 \times 5=75$, so the ticket is 15 cm long."
Observations/Documentation			

Activity 5 Assessment

Area Consolidation

Activity 5 Assessment

Area Consolidation

Investigating, Estimating, and Measuring Area (cont'd)			
Uses referents to estimate area, then measures to check Shape A "I used my fingernail as a referent for $1 \mathrm{~cm}^{2}$. I estimated the area of Shape A to be $14 \mathrm{~cm}^{2}$. Then I measured to check and the area was $16 \mathrm{~cm}^{2}$."	Uses row and column structure of an array to determine area of a rectangle "I traced the rectangle on a $1-\mathrm{cm}$ grid where each square represents $1 \mathrm{~cm}^{2}$. The rectangle forms an array with 4 rows of 6 squares: $4 \times 6=24$; the area of the rectangle is $24 \mathrm{~cm}^{2}$.	Constructs different rectangles for a given area (square centimetres) Area of rectangle $=16 \mathrm{~cm}^{2}$ "I constructed 3 different rectangles: A square with side length 4 cm : $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}$. A $2-\mathrm{cm}$ by $8-\mathrm{cm}$ rectangle: $2 \mathrm{~cm} \times 8 \mathrm{~cm}=16 \mathrm{~cm}^{2}$. A $1-\mathrm{cm}$ by $16-\mathrm{cm}$ rectangle: $1 \mathrm{~cm} \times 16 \mathrm{~cm}=16 \mathrm{~cm}^{2}$."	Flexibly determines the area of shapes, including rectangles, and solves problems A baseball ticket has an area of $75 \mathrm{~cm}^{2}$. The ticket is 5 cm wide. How long is it? "I know $A=I \times w$, so \mid solved the equation $75=1 \times 5$. I know $15 \times 5=75$, so the ticket is 15 cm long."
Observations/Documentation			

\qquad

Measurement
Unit 2 Line Master 1
Finding Duration

Start Time	End Time
2:20 p.m.	3:05 p.m.

Duration:

Duration:

Duration:

\qquad

Measurement
Unit 2 Line Master 2

Start and End Times

Start Time	End Time	
Time:	Time:	
Duration: $\frac{1}{2} \mathrm{~h}$ or \qquad min		
Time:	Time:	
Duration: $\frac{2}{3} \mathrm{~h}$ or___ min		
Time:	Time:	
Duration: $\frac{3}{4} \mathrm{~h}$ or \qquad min		

\qquad
\qquad

Activity 6 Assessment

Exploring Duration

Exploring Duration		
Tells time using fractions. "It is quarter to three or two forty-five."	Determines duration in minutes "I skip-count by 5 s as the minute hand moves from 3 to $6: 5,10,15$. The duration is 15 min ."	Relates durations in minutes to fractions of an hour "I know there are 4 groups of 15 min in 60 min . So, 15 min is $\frac{1}{4} \mathrm{~h}$."
Observations/Documentation		

Activity 6 Assessment

Exploring Duration

Exploring Duration (cont'd)				
Calculates duration of an event On Saturday, Alicia visited her grandmother from 11:30 a.m. to 1:10 p.m. How long did the visit last? "The visit lasted 1 h 40 min or $1 \frac{2}{3} \mathrm{~h}$."	"The second event lasted longer as $1 \mathrm{~h} 45 \mathrm{~min}>1 \mathrm{~h} 37 \mathrm{~min} . "$			Flexibly solves duration problems using various strategies and relationships among units It is New Year's Eve. The clock will strike midnight in 136 min. What time is it? "I know $1 \mathrm{~h}=60 \mathrm{~min}$ and $2 \mathrm{~h}=120 \mathrm{~min}$. $136 \mathrm{~min}=120 \mathrm{~min}+16 \mathrm{~min}=2 \mathrm{~h}$ and 16 min . Midnight is 12:00 a.m. The time is 9:44 p.m."
Observations/Documentation				

Measurement

Activity 7 Assessment

Solving Problems Involving Duration

Exploring Duration		
Tells time using fractions. half past "It is quarter to three or two forty-five."	Determines duration in minutes "I skip-count by 5 s as the minute hand moves from 3 to $6: 5,10,15$. The duration is 15 min ."	Relates durations in minutes to fractions of an hour "I know there are 4 groups of 15 min in 60 min. So, 15 min is $\frac{1}{4} \mathrm{~h}$."
Observations/Documentation		

Activity 7 Assessment

Solving Problems Involving Duration

Exploring Duration (cont'd)							
Calculates duration of an event On Saturday, Alicia visited her grandmother from 11:30 a.m. to 1:10 p.m. How long did the visit last? "The visit lasted 1 h 40 min or $1 \frac{2}{3} \mathrm{~h}$."	"The second event lasted longer as 1 h 45 min > 1 h 37 min."			Flexibly solves duration problems using various strategies and relationships among units It is New Year's Eve. The clock will strike midnight in 136 min. What time is it? "I know $1 \mathrm{~h}=60 \mathrm{~min}$ and $2 \mathrm{~h}=120 \mathrm{~min}$. $136 \mathrm{~min}=120 \mathrm{~min}+16 \mathrm{~min}=2 \mathrm{~h}$ and 16 min . Midnight is 12:00 a.m. The time is $9: 44$ p.m."			
Observations/Documentation							

Activity 8 Assessment

 Consolidation| Exploring Duration | | |
| :---: | :---: | :---: |
| Tells time using fractions.
 "It is quarter to three or two forty-five." | Determines duration in minutes
 "I skip-count by 5 s as the minute hand moves from 3 to $6: 5,10,15$. The duration is 15 min ." | Relates durations in minutes to fractions of an hour
 "I know there are 4 groups of 15 min in 60 min . So, 15 min is $\frac{1}{4} \mathrm{~h}$." |
| Observations/Documentation | | |
| | | |

Activity 8 Assessment

 Consolidation| Exploring Duration (cont'd) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Calculates duration of an event
 On Saturday, Alicia visited her grandmother from 11:30 a.m. to 1:10 p.m. How long did the visit last?
 "The visit lasted 1 h 40 min or $1 \frac{2}{3} \mathrm{~h}$." | "The second event lasted longer as 1 h 45 min > 1 h 37 min." | | | Flexibly solves duration problems using various strategies and relationships among units
 It is New Year's Eve. The clock will strike midnight in 136 min. What time is it?
 "I know $1 \mathrm{~h}=60 \mathrm{~min}$ and $2 \mathrm{~h}=120 \mathrm{~min}$. $136 \mathrm{~min}=120 \mathrm{~min}+16 \mathrm{~min}=2 \mathrm{~h}$ and 16 min . Midnight is 12:00 a.m. The time is 9:44 p.m." |
| Observations/Documentation | | | | |
| | | | | |

\qquad
\qquad

Scavenger Hunt Recording Sheet
 Polygons

Sketch of Polygon	Properties

\qquad
\qquad

Scavenger Hunt

Recording Sheet (cont'd)
Prisms

Sketch of Prism	Properties

\qquad

Measure each angle.

\qquad

Measure the angles in each shape.

\qquad
\qquad

Geometry Unit 1 Line Master 3a Quadrilaterals

\qquad

\qquad
\qquad

Geometry	Venn Diagram

Geometry

Is It, or Isn't It?

Use transformations to determine if these are geometric shapes or close approximations.

1. What geometric properties must a rectangle have?

Rectangle or close approximation
What transformations did you use to make your decision? Explain.
2. What geometric properties must a parallelogram have?

Parallelogram or close approximation

What transformations did you use to make your decision? Explain.
\qquad

Geometry
 Unit 1 Line Master 5b
 Is It, or Isn't It? (cont'd)

3. What geometric properties must an equilateral triangle have?

Equilateral triangle or close approximation

What transformations did you use to make your decision? Explain.
4. What geometric properties must a rhombus have?

Rhombus or close approximation

What transformations did you use to make your decision? Explain.

\qquad

Geometry
 Unit 1 Line Master 5c
 Is It, or Isn't It? (cont'd)

5. What geometric properties must a square have?

Square or close approximation

What transformations did you use to make your decision? Explain.
6. What geometric properties must an isosceles triangle have?

Isosceles triangle or close approximation

What transformations did you use to make your decision? Explain.
\qquad
\qquad

Geometry
Unit 1 Line Master 6a

Algorithms and Routines

An algorithm is a sequence of instructions. We follow sequences of instructions, whether we notice or not, during our daily lives.

A recipe to bake a cake is an algorithm. When we engage in certain routines, such as getting ready for school, we are working our way through an algorithm.

What is this algorithm for?

Code
Put on pajamas
Go to sleep
Read a chapter from your book
Brush teeth

If this algorithm was for your bedtime routine, would it be in the correct order?

How might you reorganize the steps in the algorithm so that it is accurate?
Is more than one sequence possible? Explain.
Within this algorithm for a bedtime routine, there could be additional algorithms with further sequences of instructions. For example, when you brush your teeth, you follow another sequence of instructions!
\qquad
\qquad

Geometry
Unit 1 Line Master 6b

Algorithms and Routines (cont'd)

Another routine that you likely engage in several times per day is washing your hands. Write an algorithm for washing your hands.

You might include instructions to repeat steps a certain number of times. You might include instructions to repeat steps only under certain conditions, such as if your hands are still dirty. Specific instructions help to make algorithms more straightforward to follow.

Code: Washing your hands

Compare your algorithm for washing your hands with that of a classmate's. How are they alike? How are they different?
\qquad
\qquad

Geometry
Unit 1 Line Master 6c

Algorithms and Routines (cont'd)

1. On your own or with a partner, choose another typical daily routine. Write an algorithm for completing that routine.

Code:

Is there more than one way to write the sequence of instructions in your algorithm? Explain.

Have your classmates try to figure out what routine your algorithm was written for.
\qquad
\qquad

Geometry
Unit 1 Line Master 7a
Algorithms and Classifying Triangles

You have written algorithms for completing different daily routines. Let's take a look at writing algorithms to help us classify triangles according to their side lengths or angle measures.
1.Here is an algorithm for classifying triangles according to their angle measures.

Algorithm for classifying a triangle according to angle measures

 Measure all three angles.If one angle is equal to 90 degrees, it's a right triangle.
If one angle is greater than 90 degrees, it's an obtuse triangle.
If all three angles are less than 90 degrees, it's an acute triangle.
Use the algorithm to classify five of these triangles.
Check if you get the correct answer each time.
If not, adjust the algorithm as necessary.

\qquad
\qquad

Geometry
Unit 1 Line Master 7b

Algorithms and Classifying Triangles (cont'd)

Answers:

A: Right triangle
B: Acute triangle
C: Acute triangle
D: Obtuse triangle
E: Right triangle
F: Right triangle
G: Acute triangle
I: Obtuse triangle
2. Write an algorithm for classifying a triangle according to side lengths.

Algorithm for classifying a triangle according to side lengths

Use your algorithm to classify five of these triangles.
Check if you get the correct answer each time.
If not, adjust the algorithm as necessary.

\qquad

Geometry

Unit 1 Line Master 7c

Algorithms and Classifying Triangles (cont'd)

Answers:

A: Scalene triangle
C: Isosceles triangle
B: Equilateral triangle
E : Scalene triangle
G: Equilateral triangle
D: Scalene triangle
F: Scalene triangle
H: Isosceles triangle
I: Scalene triangle
\qquad
\qquad

Geometry
Unit 1 Line Master 8a

Testing an Artefact and Providing

 FeedbackWhen artefacts such as computer applications are created, a design process is followed. Part of this process involves testing and troubleshooting. Throughout the design process, feedback is usually provided by the user of the computer application.

Feedback helps to ensure all needs are considered during the design process.

1. Check out this simple application and the design and feedback process that was done during its creation.
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Purpose of the } \\
\text { application }\end{array} & \begin{array}{l}\text { A computer programmer was asked to create a } \\
\text { simple application that determines if an angle is } \\
\text { right, obtuse, acute, or reflex. }\end{array} \\
\hline \text { Planning } & \begin{array}{l}\text { The computer programmer starts by writing an } \\
\text { algorithm. } \\
\text { Ask the user for the angle } \\
\text { If the angle is equal to } 90 \text { then } \\
\text { Say: It is right }\end{array}
$$

If the angle is greater than 180, then

Say: It is reflex

If the angle is greater than 90, then

Say: It is obtuse\end{array}\right\}\)| If the angle is less than 90, then |
| :--- |
| Say: It is acute |

\qquad
\qquad

Geometry
Unit 1 Line Master 8b

Testing an Artefact and Providing Feedback (cont'd)
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Creating the } \\ \text { Application }\end{array} & \begin{array}{l}\text { The computer programmer creates this } \\ \text { application. } \\ \text { https://scratch.mit.edu/projects/873766910/editor/ }\end{array} \\ \hline \begin{array}{l}\text { Testing the } \\ \text { Application }\end{array} & \begin{array}{l}\text { The computer programmer tests the application } \\ \text { and asks for feedback from the user. } \\ \text { The user provides this feedback: }\end{array} \\ \text { - There seems to be an error. When I run the } \\ \text { application, it says that the angle is obtuse } \\ \text { even if it is greater than 180. It should say } \\ \text { an angle greater than 180 is reflex. } \\ \text { I also suggest changing the background } \\ \text { and the sprite so that it is not a blank } \\ \text { background with a cat. }\end{array}\right\}$
\qquad
\qquad

Geometry
Unit 1 Line Master 8c

Testing an Artefact and Providing Feedback (cont'd)
2. A computer application has been written to classify triangles according to side lengths. Test out the application and provide feedback to the computer programmer.

Purpose of the application	A computer programmer was asked to create an application that determines if a triangle is equilateral, isosceles, or scalene.
Planning	The computer programmer starts by writing an algorithm. Say: Your triangle will be classified according to number of equal sides. Ask: How many equal sides does the triangle have? If the number of equal sides is greater than 3, then Say: It can't be a triangle! otherwise... number of equal sides is equal If the number then to Say: Scalene!
If the number of equal sides is 2,	
thenSay: Isosceles! If the number of equal sides is 3,	
thenSay: Equilateral!	

\qquad
\qquad

Geometry
Unit 1 Line Master 8d

Testing an Artefact and Providing Feedback (cont'd)

Creating the Application	The computer programmer creates this application. https://scratch.mit.edu/projects/873771292/editor/
Testing the Application	The computer programmer tests the application and asks for feedback from users. Enter your feedback here:

The computer programmer troubleshoots and alters the code so that the application works.

Indicate how the code had to be altered in order to work properly:

The user tests the application again and it works!
Optional Challenge: Alter the code in the Scratch application to show what the final product should look like, based on the feedback you provided.
\qquad
\qquad

Flow Chart Legend

Symbol	Name	Function
	Start or End	An oval is used for the start and end of a program.
	Arrows	An arrow is used to illustrate the relationship between the shapes in the flow chart.
	Process	A parallelogram is used for the inputs or outputs of a program.

Activity 1 Assessment Properties of Polygons and Prisms

Exploring Polygons and Prisms			
Recognizes that a close approximation of a polygon is not the same as a polygon "The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."	Identifies relationships between sides of a polygon, and faces of a prism by measuring "A rectangular prism has opposite faces parallel and adjacent faces perpendicular."	Recognizes and names different quadrilaterals Rectangle Square Rhombus Parallelogram Trapezoid "These are all quadrilaterals because they have 4 sides. Each one has a special name."	Identifies and describes geometric properties of different quadrilaterals "A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
Observations/Documentation			

Activity 1 Assessment

Properties of Polygons and Prisms

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Activity 2 Assessment

 Classifying and Measuring Angles

Activity 3 Assessment

Investigating Quadrilaterals

Exploring Polygons and Prisms			
Recognizes that a close approximation of a polygon is not the same as a polygon "The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."	Identifies relationships between sides of a polygon, and faces of a prism by measuring "A rectangular prism has opposite faces parallel and adjacent faces perpendicular."	Recognizes and names different quadrilaterals Rectangle Square Rhombus Parallelogram Trapezoid "These are all quadrilaterals because they have 4 sides. Each one has a special name."	Identifies and describes geometric properties of different quadrilaterals "A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
Observations/Documentation			

Activity 3 Assessment

Investigating Quadrilaterals

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Activity 4 Assessment

Classifying Triangles

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Exploring Polygons and Prisms} \\
\hline \begin{tabular}{l}
Recognizes that a close approximation of a polygon is not the same as a polygon \\
"The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."
\end{tabular} \& \begin{tabular}{l}
Identifies relationships between sides of a polygon, and faces of a prism by measuring \\
"A rectangular prism has opposite faces parallel and adjacent faces perpendicular."
\end{tabular} \& \begin{tabular}{l}
Recognizes and names different quadrilaterals
\(\square\)

\square
\qquad

"These are all quadrilaterals because they have 4 sides. Each one has a special name."

 \&

Identifies and describes geometric properties of different quadrilaterals

"A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
\end{tabular}

\hline \multicolumn{4}{|l|}{Observations/Documentation}

\hline \& \& \&

\hline
\end{tabular}

Activity 4 Assessment

Classifying Triangles

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Activity 5 Assessment

Investigating Geometric Properties through Transformations

Exploring Polygons and Prisms			
Recognizes that a close approximation of a polygon is not the same as a polygon "The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."	Identifies relationships between sides of a polygon, and faces of a prism by measuring "A rectangular prism has opposite faces parallel and adjacent faces perpendicular."	Recognizes and names different quadrilaterals Rectangle Square Rhombus Parallelogram Trapezoid "These are all quadrilaterals because they have 4 sides. Each one has a special name."	Identifies and describes geometric properties of different quadrilaterals "A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
Observations/Documentation			

Activity 5 Assessment

Investigating Geometric Properties through Transformations

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Geometry

Activity 6 Assessment

Coding: Classifying Triangles Using Algorithms

Exploring Polygons and Prisms			
Recognizes that a close approximation of a polygon is not the same as a polygon "The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."	Identifies relationships between sides of a polygon, and faces of a prism by measuring "A rectangular prism has opposite faces parallel and adjacent faces perpendicular."	Recognizes and names different quadrilaterals Rectangle Square Rhombus Parallelogram "These are all quadrilaterals because they have 4 sides. Each one has a special name."	Identifies and describes geometric properties of different quadrilaterals "A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
Observations/Documentation			

Activity 6 Assessment

Coding: Classifying Triangles Using Algorithms

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Activity 7 Assessment

Consolidating Shapes, Prisms, and Angles

Exploring Polygons and Prisms			
Recognizes that a close approximation of a polygon is not the same as a polygon "The Yield sign approximates a triangle, but it isn't a triangle because the corners are rounded."	Identifies relationships between sides of a polygon, and faces of a prism by measuring "A rectangular prism has opposite faces parallel and adjacent faces perpendicular."	Recognizes and names different quadrilaterals Rectangle Square Rhombus Parallelogram Trapezoid "These are all quadrilaterals because they have 4 sides. Each one has a special name."	Identifies and describes geometric properties of different quadrilaterals "A parallelogram has opposite sides equal and parallel, opposite angles equal, and adjacent angles supplementary."
Observations/Documentation			

Activity 7 Assessment

Consolidating Shapes, Prisms, and Angles

Exploring Polygons and Prisms (cont'd)			
Classifies quadrilaterals in a hierarchy and names them in different ways "A rectangle is a parallelogram because it has opposite sides equal and parallel, and opposite angles equal."	Describes various triangles by side length "I know the first is scalene, the second is isosceles, and the third is equilateral by looking at the number of equal sides."	Classifies triangles using geometric properties related to angles "The first triangle is an acute triangle because it has all acute angles. The second triangle is an obtuse triangle because it has an obtuse angle."	Verifies that geometric properties of a polygon do not change after a transformation "After a rotation, the side lengths and angle measures of the polygon don't change."
Observations/Documentation			

Activity 7 Assessment

Consolidating Shapes, Prisms, and Angles

Classifying and Measuring Angles			
Identifies and compares different types of angles using the benchmark of 90° "This is an acute angle because it is less than 90°. This is an obtuse angle because it is greater than 90°."	Compares, measures, and classifies angles using a protractor "I can use the protractor to compare and measure angles. The two scales on the protractor make it easier to measure acute and obtuse angles."	Estimates, compares, and measures angles using standard units and benchmarks "The first angle is about halfway between 0° and 45°, so it is about 25°. The second angle is less than halfway between 90° and 180°, so it's about 130°."	Relates angles of $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° to fractions of a circle "A right angle, or 90°, represents a $\frac{1}{4}$ turn; 180° is a $\frac{1}{2}$ turn, 270° is a $\frac{3}{4}$ turn, and 360° is a full turn."
Observations/Documentation			

Activity 1 Assessment

Interpreting and Drawing Pictographs and Dot Plots

Describing and Representing Data			
Describes given data using frequency counts. Students in three Grade 4 classes were asked to choose their favourite pizza. "30 students chose Pepperoni as their favourite pizza. Only 6 students chose Vegan."	Represents data using a pictograph or dot plot using many-to-one correspondence. "The key is 1 square represents 4 students. For 17 students: $17 \div 4=4$ R1, so I drew 4 full squares, and one-fourth of another square."	Represents data using a bar graph using many-to-one correspondence. Averase Lengmonoctanadan wammas "I used the scale 1 square $=5 \mathrm{~cm}$ to represent animal lengths. All of the lengths were divisible by 5 , so I divided each animal's length by 5 to find the number of squares in each bar."	Flexibly creates representations to show data using many-to-one correspondence. Hours We Spent with Friends Last Weekend "I used a key of 1 dot $=3$ students because all numbers are multiples of 3 and are in the skip-counting by 3s sequence. Other students will find it easy to interpret."
Observations/Documentation			

Activity 1 Assessment

Interpreting and Drawing Pictographs and Dot Plots

Interpreting Data and Making Informed Decisions			
Draws conclusions based on data presented. "A sweater uses about 6 times as many bottles as a t-shirt."	Uses inferences to make predictions about future events. Number of Plastic Bottles Needed to Make Different Items "More t-shirts could be made and sold with the fewest number of plastic bottles. I predict it would take less time to collect bottles and more money could be made. I think t-shirts should be sold for a fundraiser."	Interprets the results of data presented graphically. "The bar graphs shows 99 students took the survey: $24+6+30+39=$ 99. 15 more students listen to music than play games on-line."	Analyzes and interprets data to make convincing arguments and informed decisions. "Since most passengers are on bus number 2, the bus company might add another bus to that route. The company could take one of the schedule times from bus number 4 and give it to bus 2 because it has the fewest number of passengers. It is important to meet the needs of the passengers."
Observations/Documentation			

Activity 2 Assessment

 Interpreting and Drawing Bar Graphs| Describing and Representin | Data | | |
| :---: | :---: | :---: | :---: |
| Describes given data using frequency counts.
 Students in three Grade 4 classes were asked to choose their favourite pizza.
 "30 students chose Pepperoni as their favourite pizza. Only 6 students chose Vegan." | Represents data using a pictograph or dot plot using many-to-one correspondence.
 Our Favourite Type of Pizza
 "The key is 1 square represents 4 students.
 For 17 students: $17 \div 4=4$ R1, so I drew 4 full squares, and one-fourth of another square." | Represents data using a bar graph using many-to-one correspondence.
 "I used the scale 1 square $=5 \mathrm{~cm}$ to represent animal lengths.
 All of the lengths were divisible by 5 , so I divided each animal's length by 5 to find the number of squares in each bar." | Flexibly creates representations to show data using many-to-one correspondence.
 Hours We Spent with Friends Last Weekend
 "I used a key of 1 dot $=3$ students because all numbers are multiples of 3 and are in the skip-counting by 3s sequence. Other students will find it easy to interpret." |
| Observations/Documentation | | | |
| | | | |

Activity 2 Assessment

Interpreting and Drawing Bar Graphs

Interpreting Data and Makin	Informed Decisions		
Draws conclusions based on data presented. "A sweater uses about 6 times as many bottles as a t-shirt."	Uses inferences to make predictions about future events. Number of Plastic Bottles Needed to Make Different Items "More t-shirts could be made and sold with the fewest number of plastic bottles. I predict it would take less time to collect bottles and more money could be made. I think t-shirts should be sold for a fundraiser."	Interprets the results of data presented graphically. "The bar graphs shows 99 students took the survey: $24+6+30+39=$ 99. 15 more students listen to music than play games on-line."	Analyzes and interprets data to make convincing arguments and informed decisions. "Since most passengers are on bus number 2, the bus company might add another bus to that route. The company could take one of the schedule times from bus number 4 and give it to bus 2 because it has the fewest number of passengers. It is important to meet the needs of the passengers."
Observations/Documentation			

Activity 3 Assessment

Comparing Graphs

Describing and Representing Data			
Describes given data using frequency counts. Students in three Grade 4 classes were asked to choose their favourite pizza. "30 students chose Pepperoni as their favourite pizza. Only 6 students chose Vegan."	Represents data using a pictograph or dot plot using many-to-one correspondence. Our Favourite Type of Pizza "The key is 1 square represents 4 students. For 17 students: $17 \div 4=4$ R1, so I drew 4 full squares, and one-fourth of another square."	Represents data using a bar graph using many-to-one correspondence. Averase Lengmonoctanadan wammas "I used the scale 1 square $=5 \mathrm{~cm}$ to represent animal lengths. All of the lengths were divisible by 5 , so I divided each animal's length by 5 to find the number of squares in each bar."	Flexibly creates representations to show data using many-to-one correspondence. Hours We Spent with Friends Last Weekend "I used a key of 1 dot $=3$ students because all numbers are multiples of 3 and are in the skip-counting by 3s sequence. Other students will find it easy to interpret."
Observations/Documentation			

Activity 3 Assessment

Comparing Graphs

Activity 4 Assessment

 Data Management Consolidation| Describing and Representing Data | | | |
| :---: | :---: | :---: | :---: |
| Describes given data using frequency counts.
 Students in three Grade 4 classes were asked to choose their favourite pizza.
 "30 students chose Pepperoni as their favourite pizza. Only 6 students chose Vegan." | Represents data using a pictograph or dot plot using many-to-one correspondence.
 "The key is 1 square represents 4 students.
 For 17 students: $17 \div 4=4$ R1, so I drew 4 full squares, and one-fourth of another square." | Represents data using a bar graph using many-to-one correspondence.
 Average Length of Canadian Mammals
 "I used the scale 1 square $=5 \mathrm{~cm}$ to represent animal lengths.
 All of the lengths were divisible by 5 , so I divided each animal's length by 5 to find the number of squares in each bar." | Flexibly creates representations to show data using many-to-one correspondence.
 Hours We Spent with Friends Last Weekend
 "I used a key of 1 dot $=3$ students because all numbers are multiples of 3 and are in the skip-counting by 3s sequence. Other students will find it easy to interpret." |
| Observations/Documentation | | | |
| | | | |

Activity 4 Assessment

Data Management Consolidation

Interpreting Data and Making Informed Decisions			
Draws conclusions based on data presented. "A sweater uses about 6 times as many bottles as a t-shirt."	Uses inferences to make predictions about future events. Number of Plastic Bottles Needed to Make Different Items "More t-shirts could be made and sold with the fewest number of plastic bottles. I predict it would take less time to collect bottles and more money could be made. I think t-shirts should be sold for a fundraiser."	Interprets the results of data presented graphically. "The bar graphs shows 99 students took the survey: $24+6+30+39=$ 99. 15 more students listen to music than play games on-line."	Analyzes and interprets data to make convincing arguments and informed decisions. "Since most passengers are on bus number 2, the bus company might add another bus to that route. The company could take one of the schedule times from bus number 4 and give it to bus 2 because it has the fewest number of passengers. It is important to meet the needs of the passengers."
Observations/Documentation			

