Investigating Fractions

Recognizes that equivalent fractions name the same quantity

"If I partition each fourth into 2 equal parts, I see $\frac{3}{4}$ and $\frac{6}{8}$ are the same amount."

Identifies equivalent fractions using paper folding

"I folded the rectangle in half and shaded one region. I folded it in half again to show $\frac{1}{2} = \frac{2}{4}$. I continued to fold the paper in half to show that $\frac{1}{2}$ also equals $\frac{4}{8}$ and $\frac{8}{16}$."

Names equivalent fractions by multiplying or dividing numerator and denominator by the same number

$$\frac{1}{4}$$
: $\frac{1 \times 3}{4 \times 3} = \frac{3}{12}$

"So, $\frac{3}{12}$ is equivalent to $\frac{1}{4}$."

Observations/Documentation

Investigating Fractions (cont'd)

Writes a fraction in simplest form

$$\frac{16}{20}$$
: $\frac{16 \div 4}{20 \div 4} = \frac{4}{5}$

"4 and 5 have no common factors. So, $\frac{4}{5}$ is in simplest form."

Uses fraction sense (e.g., benchmarks) to compare fractions

"I know $\frac{4}{6}$ is a little more than half, $\frac{8}{9}$ is pretty close to one whole, and $\frac{1}{8}$ is close to zero."

Compares and orders fractions using a variety of strategies (e.g., equivalent fractions)

 $\frac{5}{8}$, $\frac{3}{4}$, $\frac{1}{2}$: I wrote each fraction with denominator 8.

$$\frac{3 \times 2}{4 \times 2} = \frac{6}{8}$$
 and $\frac{1 \times 4}{2 \times 4} = \frac{4}{8}$; so, $\frac{1}{2} < \frac{5}{8} < \frac{3}{4}$

Observations/Documentation