Number Unit 3 Line Master 1c

Integer Bases and Zero Exponents Answers

1. For example:

Power	Standard Form
24	16
2 ³	8
2 ²	4
2 ¹	2
2 ⁰	1

2.

Power	Base	Exponent	Expanded Form	Standard Form
2 ³	2	3	2 × 2 × 2	8
$(-2)^3$	-2	3	(-2) × (-2) × (-2)	-8
$-(2^3)$	2	3	-(2 × 2 × 2)	-8
-2^{3}	2	3	-(2 × 2 × 2)	-8
$-(-2)^3$	-2	3	-((-2) × (-2) × (-2))	8

3.

Positive	Negative		
1^{10} $(-1)^{100} - (-1^6)$	$-(1^{10})$ -1^2 $(-1)^3$ $-(1^9)$		

4. a) 14 cm

b) 4 cm

5. For example: I determined the value of the powers of 3 with exponents 1 to 8:

- $3^1 = 3$
- $3^2 = 9$
- $3^3 = 27$
- $3^4 = 81$
- $3^{5} = 243$
- $3^{6}_{-} = 729$
- $3^7 = 2187$
- $3^8 = 6561$

There is a repeating pattern in the ones digits (3, 9, 7, 1). Every 4th number ends in 1. 1992 is divisible by 4, so I know the ones digit of the value of 3^{1992} will be 1.