Date

Number Unit 2 Line Master 1a

Investigating Perfect Square Fractions

- This grid has 100 grid squares.
 a) Shade grid squares to model ⁸¹/₁₀₀ as a square.
 - b) What is the side length of the shaded square?
 - c) The grid has side length 10 units.
 Write the side length of your shaded square as a fraction of the side length of the grid (e.g., with denominator 10).
 - d) What do you notice about the side length of the shaded part?
 - e) Is $\frac{81}{100}$ a perfect square? Explain.
- 2. This grid has 64 grid squares. a) Shade grid squares to model $\frac{36}{64}$ as a square.
 - b) What is the side length of the shaded square?
 - c) The grid has side length 8 units. Write the side length of your shaded square as a fraction of the side length of the grid (e.g., with denominator 8).
 - d) What do you notice about the side length of the shaded part?
 - e) Is $\frac{36}{64}$ a perfect square? Explain.

Date

```
Number
Unit 2 Line Master 1b Investigating Perfect Square Fractions (cont'd)
```

- 3. Each of these fractions is less than 1. For each fraction:
 - Identify whether it is a perfect square or not. Explain or illustrate using a square.
 - If the fraction is a perfect square, identify its square root. Multiply to check.
 - If the fraction is not a perfect square, explain your reasoning.

a) $\frac{25}{49}$

Name

b) $\frac{16}{36}$

c) $\frac{64}{75}$

- d) $\frac{14}{25}$
- 4. Each of these fractions is greater than 1. For each fraction:
 - Identify whether it is a perfect square or not.
 - If the fraction is a perfect square, identify its square root. Multiply to check.
 - If the fraction is not a perfect square, explain your reasoning.

a) $\frac{49}{16}$

d) $3\frac{13}{36}$