

Also, I can see that it is a perfect square in the grid.

b) 6 units

- c) $\frac{6}{8}$ units
- d) $\tilde{6}$ is the square root of 36 and 8 is the square root of 64.
- e) Yes, because it can be represented with a square with side length $\frac{6}{8}$ units.
- 3. a) $\frac{25}{49}$ is a perfect square because it can be represented with a square of side length $\frac{5}{7}$ units. The square root is $\frac{5}{7}$: $\frac{5}{7} \times \frac{5}{7} = \frac{25}{49}$
 - b) $\frac{16}{36}$ is a perfect square because it can be represented with a square of side length $\frac{4}{6}$ units. The square root is $\frac{4}{6}$, or $\frac{2}{3}$: $\frac{4}{6} \times \frac{4}{6} = \frac{16}{36}$
 - c) $\frac{64}{75}$ is not a perfect square. I cannot represent 75 with a square.
 - d) $\frac{14}{25}$ is not a perfect square. I cannot represent 14 with a square.

Number Unit 2 Line Master 1d

Investigating Perfect Square Fractions Answers (cont'd)

- 4. a) $\frac{49}{16}$ is a perfect square, because the numerator, 49, and the denominator, 16, are both perfect squares; the square root is $\frac{7}{4}$ or $1\frac{3}{4}$.
 - $\frac{7}{4} \times \frac{7}{4} = \frac{49}{16}$ b) $\frac{75}{16}$ is not a perfect square, because the numerator, 75, is not a perfect square. c) $5\frac{4}{9} = \frac{49}{9}$ is a perfect square, because the numerator, 49, and the denominator, 9, are both perfect squares; the square root is $\frac{7}{3}$ or $2\frac{1}{3}$.

$$\frac{7}{7} \times \frac{7}{7} = \frac{49}{7}$$

d) $3\frac{13}{36} = \frac{121}{36}$ is a perfect square, because the numerator, 121, and the denominator, 36,

are both perfect squares; the square root is $\frac{11}{6}$ or $1\frac{5}{6}$.

$$\frac{11}{6} \times \frac{11}{6} = \frac{121}{36}$$