
Name	Date	

Exploring Volume with Coding Answers

Part A: Volume of a Prism

What happens to the volume of a prism when its height is doubled?

About the Code: Different computer languages might use different keyboard characters for math calculations, but all languages follow the order of operations (BEDMAS) in their calculations. In Python, one asterisk (*) is used for multiplication.

 Copy this exact code into a Python console, such as <u>Google Colab</u> or <u>https://cscircles.cemc.uwaterloo.ca/console/</u> to calculate the volume of a rectangular based prism as its height doubles each time.

```
length = 5
width = 5
height = 10

print ("Height Prism Volume")

for i in range (0,10):
   baseArea = length * width
   prismVolume = round(baseArea * height)
   print (height, "\t", prismVolume)
   height = height * 2
```

About the Code:

- The values for the length and width both start at 5, and the value for height starts at 10.
- The title for each column of data that will be output are: Height, Prism Volume.
- A "for" loop is used to repeat the indented code below it 10 times.

Select	<i>Run</i> to execute the code.	Height	Prism Volume
		10	250
a)	What does the output look like?	20	500
,	•	40	1000
		80	2000
		160	4000
		320	8000
b)	What happens to the volume of a prism each	640	16000
/	• • • • • • • • • • • • • • • • • • • •	1280	32000
	time the height is doubled?	2560	64000
	Each time the height doubles,	5120	128000
	the volume of the prism doubles in value.		

Name	Date	

Part B: Volume of a Pyramid

What happens to the volume of a pyramid as its height is doubled?

Let's alter the code from Part A so that it displays the volume of a pyramid with the same base and starting height as the prism.

Recall that the volume of a pyramid is $\frac{1}{3}$ the volume of a prism with the same base and height. So, you just need to divide the volume from Part A by 3.

2. Alter the code for the prism in Part A as shown below.

```
length = 5
width = 5
height = 10

print ("Height Pyramid Volume")

for i in range (0,10):
  baseArea = length * width
  pyramidVolume = round((baseArea * height)/3)
  print (height, "\t", pyramidVolume)
  height = height * 2
```

a) What does the output look like?

Height	Pyramid	Volume
10	83	
20	167	
40	333	
80	667	
160	1333	
320	2667	
640	5333	
1280	10667	
2560	21333	
5120	42667	

b) What happens to the volume of the pyramid each time the height is doubled? Each time the height doubles, the volume of the pyramid doubles. Note that since the volumes are rounded, they may appear to be slightly off, but they will be approximately twice the previous value.

Name	Date	

Measurement
Unit 3 Line Master 2i

Exploring Volume with Coding Answers (cont'd)

Part C: Volume of a Cylinder

What happens to the volume of a cylinder as its height is doubled?

Alter the code again to determine the volume of a cylinder.

Recall that the volume of a cylinder, like the volume of a prism, is: area of base × height.

The area of the base of a cylinder is the area of a circle:

Area of a circle = πr^2

About the Code:

In Python, two asterisks (**) are used for an exponent.

3. Copy this exact code to calculate the volume of a cylinder as its height doubles each time.

```
radius = 5
height = 10

print ("Height Cylinder Volume")

for i in range (0,10):
  baseArea = 3.14 * radius**2
  volumeCylinder = round(baseArea * height)
  print (height,"\t", volumeCylinder)
  height = height * 2
```

a) What does the output look like?

Height	Cylinder	Volume
10	785	
20	1570	
40	3140	
80	6280	
160	12560	
320	25120	
640	50240	
1280	100480	
2560	200960	
5120	401920	

b) What happens to the volume of the cylinder each time the height is doubled? Each time the height doubles, the volume of the cylinder doubles.

Name	Date	

What happens to the volume of a cylinder as its radius is doubled?

4. Alter the code in question 3 so that the radius doubles rather than the height:

```
radius = 5
height = 10

print ("Height Cylinder Volume")

for i in range (0,10):
   baseArea = 3.14 * radius**2
   volumeCylinder = round(baseArea * height)
   print (height,"\t", volumeCylinder)
   radius = radius * 2
```

a) Before running the code, predict what will happen to the volume of the cylinder as the radius is doubled.

For example: I think the volume will increase 4 times since the area of a circle is πr^2 and the radius is doubling.

b) Execute the code. What does the output look like?

Height	Cylinder V	olume
10	785	
10	3140	
10	12560	
10	50240	
10	200960	
10	803840	
10	3215360	
10	12861440	
10	51445760	
10	205783040)

c) What happens to the volume of the cylinder each time the radius doubles? Why does this happen?

The volume of the cylinder is 4 times the previous value each time the radius is doubled. This is because the radius is squared in the formula for the area of the base.

Name	Date	

Part D: Volume of a Cone

Recall that the volume of a cone is $\frac{1}{3}$ the volume of a cylinder with the same base and height.

5. Alter the code in Part C to see what happens to the volume of a cone when its radius is doubled.

```
radius = 5
height = 10

print ("Height Cone Volume")

for i in range (0,10):
   baseArea = 3.14 * radius**2
   volumeCone = round((baseArea * height)/3)
   print (height,"\t", volumeCone)
   radius = radius * 2
```

a) What does the output look like?

Height	Cone Volume
10	262
10	1047
10	4187
10	16747
10	66987
10	267947
10	1071787
10	4287147
10	17148587
10	68594347

b) What happens to the volume of a cone as the radius is doubled?

The volume of the cone is 4 times the previous value each time the radius is doubled. This is because the radius is squared in the formula for the area of the base.

Name	Date	

_	Me	a	su	ıre	me	ent	
	Un	it	3	Li	ne	Master	21

Reflect and Connect

6. Predict what will happen to the volume of a prism or pyramid when its height is tripled.

The volume of the prism or pyramid will triple.

7. Predict what will happen to the volume of a cylinder or cone when its height is tripled.

The volume of the cylinder or cone will triple.

8. Predict what will happen to the volume of a cylinder or cone when its radius is tripled.

The volume of the cylinder or cone will be 9 times the previous value.

9. Alter the code to explore how changing dimensions affects the area or volume of other 2-D shapes and 3-D objects.

For example: The area of a triangle as its height doubles:

```
base = 5
height = 5

print ("Height Triangle Area")

for i in range (0,10):
   area = (base * height)/2
   print (height, '\t', area)
   height = height * 2
```

The volume of a triangular prism as its height doubles:

```
base = 5
height = 5
length = 10

print ("Height Prism Volume")

for i in range (0,10):
  baseArea = (base * height)/2
  prismVolume = baseArea * length
  print (height, '\t', prismVolume)
  height = height * 2
```