Algebra

Brightening Sun and Decreasing Heat (Answers)

Brightening Sun

Unit 2 Line Master 4d

1.

Number of minutes since Sun was released	Number of units of brightness
1	9
2	15
3	21
4	27
5	33
10	63

- 2. For each additional minute since Sun was released, the number of units of brightness increases by 6.
- 3. Let *m* represent the number of minutes since Sun was released and *b* represent the number of units of brightness: b = 6m + 3
- 4. The constant in the model is the hexagon. This is the + 3 in the equation.
- 5. The model would have only the hexagon.
- 6. b = 6(16) + 3 = 99; the number of units of brightness would be 99 units.
- 7. If the number of units of brightness increased by 6 every 0.5 min, then they would increase by 12 every minute. Then, the equation is b = 12m + 3 represents the number of units of brightness after *m* minutes.

Date_

Algebra Unit 2 Line Master 4e

Brightening Sun and Decreasing Heat (Answers) (cont'd)

Decreasing Heat

1.

Number of hours since Sun was taken	Temperature (°C)
0	15
1.5	11.25
3	7.5
4.5	3.75
6	0
9	-7.5

- 2. For every 1.5 h since Sun was taken, the temperature decreases by 3.75°C.
- Let *h* represent the number of hours since Sun was taken, and *t* represent the temperature. For every 3 h, the temperature decreases by 7.5°C.
 So it decreases by 7.5°C ÷ 3 h = 2.5°C/h.
 Equation: t = 15 2.5h
- 4. a) t = 15 2.5(5) = 2.5; 2.5°C
 - b) *t* = 15 2.5(24) = -45; -45°C
- 5. From the table, it will take 6 h for the temperature to reach the freezing point, 0°C.