## Activity 9 Assessment

Dividing Integers

| Dividing Integers |  |  |  |
| :---: | :---: | :---: | :---: |
| Interprets a given model of integer division <br> "Each red tile represents -1, so each group of red tiles represents -4. Altogether, the model represents -16 and there are 4 groups of -4 . So, this model shows the quotient $(-16) \div(-4)=+4$." | Divides integers by using a model or inverse operations <br> "I want to determine $(-10) \div(+2)$. I know that $(+2) \times(-5)=(-10)$. Since multiplication and division are inverse operations, I know this means that $(-10) \div(+2)=(-5)$. So, the quotient is -5 . | Divides integers by using patterns and known relationships <br> "I know that when you divide a positive integer by a negative integer (or vice versa), the result is negative. When you divide a negative integer by another negative integer, the quotient is positive." | Uses integer division to solve problems <br> Given the division statement $(-48) \div \_8=\ldots 6$, what signs would you put in the blanks to create the greatest possible quotient? To create the least possible quotient? <br> "The greatest possible quotient is +6 . Since the dividend is negative, to get an answer of +6 , the divisor should be negative as well: $(-48) \div(-8)=(+6) .$ <br> The least possible quotient is -6 . Since the dividend is negative, to get an answer of -6 , the divisor should be positive: $(-48) \div(+8)=(-6) . "$ |
| Observations/Documentation |  |  |  |
|  |  |  |  |

