Geometry
Lesson 3 Assessment Using Scale Drawings

| Using Scale Drawings |  |  |  |
| :---: | :---: | :---: | :---: |
| Understands scale on a scale drawing <br> The scale is the ratio of a length in the drawing to the corresponding length in the actual object. For example, if a scale measurement of 5 cm represents an actual measurement of 35 m , then the scale is $1 \mathrm{~cm}: 7 \mathrm{~m}$. The scale drawing and the shape of the actual object are similar. | Uses a scale to determine actual dimensions <br> On the scale drawing, the length of a building is 15 cm . The scale of the drawing is $1 \mathrm{~cm}=2 \mathrm{~m}$. Determine the actual length of the building. <br> $1 \mathrm{~cm}=2 \mathrm{~m}$. The scale factor is 2 . $15 \times 2=30$ <br> So, 15 cm is equivalent to 30 m . The actual length of the building is 30 m . | Creates a scale drawing given a scale $1 \mathrm{~cm}=2 \mathrm{~m}$ <br> For example, the actual length was 30 m . So, the scale measurement is $30 \div 2$, or 15 cm . | Solves problems using scale drawings <br> In a scale drawing, a rectangular classroom is 18 cm by 24 cm . If the scale is $1 \mathrm{~cm}=0.5 \mathrm{~m}$, what is the area of the room? <br> The area of the scale drawing is $18 \mathrm{~cm} \times 24 \mathrm{~cm}=432 \mathrm{~cm}^{2}$. <br> Convert to square metres. $1 \mathrm{~cm}=0.5 \mathrm{~m}$, so the scale factor is 0.5 . Then, $(1 \mathrm{~cm})^{2}=(0.5 \mathrm{~m})^{2}$, or $0.25 \mathrm{~m}^{2}$. The scale factor is 0.25 . $432 \times 0.25=108$ <br> The area of the room is $108 \mathrm{~m}^{2}$. |
| Observations/Documentation |  |  |  |
|  |  |  |  |

