Measurement

Lesson 2 Assessment Solving Problems with the Pythagorean Relationship

Solving Problems with the Pythagorean Relationship					
Describes how to use the Pythagorean relationship	Uses the Pythagorean relationship to determine an unknown side length	Identifies a right triangle in a real-life situation	Uses the Pythagorean relationship to solve problems involving an unknown side length in a right triangle		
I can substitute the known side lengths into $a^2 + b^2 = c^2$, where a and b are the lengths of the shorter sides and c is the length of hypotenuse, to find the unknown length in a right triangle.	$ \begin{array}{c} 10 \text{ cm} \\ 8 \text{ cm} \end{array} $ $ \begin{array}{c} a^{2} + b^{2} = c^{2} \\ a^{2} + 8^{2} = 10^{2} \\ a^{2} + 64 = 100 \\ a^{2} = 100 - 64 \\ a^{2} = 36 \\ a = \sqrt{36} \\ a = 6 \end{array} $ The unknown side length is 6 cm.	A gameboard is a square with sides 40.8 cm. What is the length of the diagonal across the gameboard? Draw a diagram. 40.8 cm $a^2 + b^2 = c^2$ $40.8^2 + 40.8^2 = c^2$ $1664.64 + 1664.64 = c^2$ $c^2 = 3329.28$ $c \approx 57.7$ The length of the gameboard diagonal is about 57.7 cm.	The horizontal distance from a surveyor to the base of a cliff is measured to be 150 m. The distance from the surveyor to the top of the cliff is 188 m. What is the height of the cliff? $cliff \frac{188 \text{ m}}{150 \text{ m}}$ $a^2 + b^2 = c^2$ $a^2 + 150^2 = 188^2$ $a^2 + 22500 = 35344$ $a^2 = 35344 - 22500$ $a^2 = 12844$ $a = \sqrt{12844}$ $a \approx 113.33$ The height of the cliff is about 113.33 m.		

Lesson 2 Assessment

Solving Problems with the Pythagorean Relationship

Observations/Documentation				