\qquad
\qquad

Algebra
Unit 3 Line Master 9e

Answers

Challenge 1: Obtaining Input from the User

As described in the hint, add a block that asks the user how many trials they would like to simulate. Use the answer to set the number of repeats.

Challenge 2: Simulating an Unfair Coin

Alter the code as described in the hint.

For a large number of trials, the experimental probabilities
should approach HH: $\frac{1}{6}$, TT: $\frac{2}{6}$ or $\frac{1}{3}$, HT or $\mathrm{TH}: \frac{1}{6}+\frac{2}{6}=\frac{3}{6}$ or $\frac{1}{2}$
\qquad
\qquad

To simulate an unfair coin that has a $\frac{1}{4}$ probability of landing
heads, change the pick random range for the firstCoin variable to include four possibilities (0 to 3).

For a large number of trials, the experimental probabilities should approach $\mathrm{HH}: \frac{1}{8}$, TT: $\frac{3}{8}$, HT or $\mathrm{TH}: \frac{1}{8}+\frac{3}{8}=\frac{4}{8}$, or $\frac{1}{2}$
\qquad

Algebra
Unit 3 Line Master 9g

Answers (cont'd)

Challenge 3: Considering HT and TH as Separate Outcomes

New variables should be created for HT, TH, experimentalProbability-HT, and experimentalProbability-TH. Four of the subprograms need to be altered as shown below to reflect the fact that HT and TH are no longer treated as the same outcome.

The reset subprogram:

The subprogram calculating the probabilities:
define calculateExperimentalProbability
set experimentalProbability-HH ∇
to HH$) /$ totallosses
set experimentalProbability-HT \sim to $(\mathrm{HT}) /$ (totalTosses
set experimentalProbability-TH ∇ to $(\mathrm{TH}) /$ (totalTosses
set experimentalProbability-TT \checkmark to $($ TT $) /$ (totalTosses
\qquad
\qquad

Algebra
Unit 3 Line Master 9h

Answers (cont'd)

The subprograms called firstTossHeads and firstTossTails:

The theoretical probabilities are $\mathrm{HH}: \frac{1}{4}, \mathrm{HT}: \frac{1}{4}, \mathrm{TH}: \frac{1}{4}, \mathrm{TT}: \frac{1}{4}$;
for a large number of trials, the experimental probabilities should approach these numbers. Here is a sample result for 1000 trials:

```
experimentalProbability-HH 0.245
experimentalProbability-HT 0.252
experimentalProbability-TH 0.22
experimentalProbability-TT 0.283
```

