\qquad
\qquad

Algebra
Unit 3 Line Master 3f

Answers

1. Volume: $331.6625 \mathrm{~cm}^{3}$; label area: $204.1 \mathrm{~cm}^{2}$; design cost: \$306.15
2. a) The jars have similar volumes. To the nearest cubic centimetre, the volume of the first jar is $593 \mathrm{~cm}^{3}$ and the volume of the second jar is $580 \mathrm{~cm}^{3}$.
b) The first jar; to the nearest cent, the label design cost for the first jar is $\$ 256.22$ and the label design cost for the second jar is $\$ 296.26$.
3. In the main program, I would set the pricePerSquareCM variable to 1.25 instead of 1.5 .
4. Sample answer:

The first part of the subprogram collectInfo would change to
ask for the container radius
In the subprogram calculateVolume, I would delete the line that determines the radius.
I would change the subprogram calculateLabelArea, like this:

```
subprogram calculateLabelArea
    labelArea = 2 * pi * radius * labelHeight
display labelArea
```

\qquad
\qquad

Algebra
Unit 3 Line Master 3g

Answers (cont'd)

5. Sample answer:
a) I would create a new variable for the surface area of the top, called topSA.
In the pseudocode, I would add a new subprogram called calculateTopSA:
subprogram calculateTopSA
topSA = pi * radius * radius
display topSA
In the program, it would look like this:
define calculateTopSA
set topSA \sim to $((\mathrm{pi}) *(($ radius $) *($ radius
b) I would create a new variable for the cost to design the sticker, called topStickerCost.
In the pseudocode, I would add a new subprogram called calculateTopStickerCost:
```
subprogram calculateTopStickerCost
topStickerCost = pricePerSquareCM * topSA
display topStickerCost
```

In the program, it would look like this:

define calculateTopStickerCost

set topStickerCost \sim to (pricePerSquareCM $)$ * (topSA
\qquad
\qquad

Algebra
Unit 3 Line Master 3h

Answers (cont'd)

Extensions:

Sample answers:

- Below the stage, I selected Show to have the sprite appear, made the size 40, and dragged the sprite to the lower left corner of the stage.

Then, at the end of the main program, I added a block that made the sprite announce what the design cost was.

say join The design cost is designCost

- I added a block to the end of the label design cost subprogram. The new block multiplies the designCost variable by 100 , rounds it, then divides by 100 . The block looks like this:

- Samples using grocery items will vary.
\qquad

Algebra
Unit 3 Line Master 3i

Answers (cont'd)

- Sample program based on modifying Yindi's program. For this sample, an image was added to help clients visualize the box and which face will be considered the base.

define collectinfo
define collectinfo
ask What's the length of the box? and wait
set length \quad to answer
ask What's the width of the box? and wait

define calculateDesignCost
set designCost \sim to $($ pricePerSquareCM $) *($ labelArea

Output for box with length 6 cm , width 4 cm , and height 8.5 cm .

Labels for Boxes

Click the Green Flag to begin.
Enter the length, width, and height of the prism in centimetres when asked.

