Activity 6 Assessment

Working with Monomials and Binomials

Working with Monomials and Binomials			
Interprets models of monomials and binomials "This design models $(5 s+4 t)$."	Determines sums and differences of monomials with whole-number or integer coefficients $6 s-(-2 s)$ "I modelled $6 s$. I didn't have any -s-tiles to take away, so I added 2 zero pairs. I took away $2-s$-tiles, leaving $8 s$-tiles, or $8 s . "$	Determines sums of binomials with integer coefficients $(-3 x+4 y)+(-2 x-3 y)$ "I need to model 2 different variables and positive and negative coefficients. I'm going to use algebra tiles and two-colour counters. When I combine tiles and counters, and remove zero pairs, I end up with 5 red x-tiles and 1 yellow y-counter. The answer is $-5 x+y$."	Solves applied problems involving the addition of binomials Each side of an equilateral triangle has length $(2 x+5) \mathrm{cm}$. What is its perimeter? "The perimeter is the sum of the side lengths: $(2 x+5)+(2 x+5)+(2 x+5)$ I can add the x 's and add the constants. $\begin{aligned} & 2 x+2 x+2 x+5+5+5 \\ = & 6 x+15 \end{aligned}$ The perimeter is $(6 x+15) \mathrm{cm}$.
Observations/Documentation			

