## Activity 1 Assessment

Investigating Perfect Squares and Square Roots

| Investigating Perfect Squares and Square Roots |  |  |  |
| :---: | :---: | :---: | :---: |
| Uses exponential notation to show factors of a number $\begin{aligned} 25 & =5 \times 5 \\ & =5^{2} \end{aligned}$ | Identifies a perfect square and a non-perfect square $\begin{aligned} 64 & =8 \times 8 \\ & =8^{2} \end{aligned}$ <br> 64 is a perfect square because it can be written as the product of two equal integers factors $\begin{aligned} 63 & =3 \times 3 \times 7 \\ & =3^{2} \times 7 \end{aligned}$ <br> 63 is not a perfect square because it cannot be written as the product of two equal integer factors. There is a single prime factor of 7 leftover | Determines the square root of a perfect square $\begin{aligned} 144 & =2 \times 2 \times 2 \times 2 \times 3 \times 3 \\ & =2 \times 2 \times 3 \times 2 \times 2 \times 3 \\ & =12 \times 12 \\ \sqrt{144} & =12 \end{aligned}$ | Estimates the square root of a nonperfect square <br> I know that $\sqrt{81}=9$ and $\sqrt{100}=10$, so I estimate that $\sqrt{90}$ is approximately 9.5 because 90 is about halfway between 81 and 100 . |
| Observations/Documentation |  |  |  |
|  |  |  |  |

