Lesson 1 Assessment Exploring the Pythagorean Theorem

Exploring the Pythagorean Theorem			
Identifies hypotenuse of a right triangle The hypotenuse is the longest side of a right triangle and is opposite the 90° angle.	Describes the Pythagorean theorem $a^{2}+b^{2}=c^{2}$ In a right triangle, the sum of the areas of the two smaller squares equals the area of the larger square.	Uses the Pythagorean theorem to identify a right triangle Do the lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm form a right triangle? The numbers 3, 4, 5 are a Pythagorean triple. Since Pythagorean triples satisfy the Pythagorean theorem, these lengths form a right triangle. $3^{2}+4^{2}=9+16=25$, which is 5^{2}	Applies the Pythagorean theorem to determine the length of the hypotenuse A top of a slide is 6 m above the ground and the base of the slide is 4.5 m along the ground. How long is the slide? The length of the slide represents the hypotenuse of a right triangle. I can use the Pythagorean theorem. $\begin{aligned} a^{2}+b^{2} & =c^{2} \\ 6^{2}+4.5^{2} & =c^{2} \\ 36+20.25 & =c^{2} \\ c^{2} & =56.25 \\ c & =\sqrt{56.25} \\ c & =7.5 \end{aligned}$ The slide is 7.5 m long.
Observations/Documentation			

