\qquad
\qquad

Number
Unit 2 Line Master 14a

Escape to the Fun Fair

Sunnyshores Middle School is hosting a fun fair for students and their families. They have rented some games and will organize other games and activities themselves.
They need your help to get ready.
Help them prepare by answering these questions.
You can circle your answers here and write any other notes you want.

Question	Choices
1. The school will sell tickets for a raffle at the fun fair. They are hoping to raise $\$ 1200$ from the raffle.	A. $\$ 3.50$ per ticket
They expect 475 people will attend the fair. Assuming each person will buy a ticket, what price should the tickets be to allow the school to raise an amount close to their goal?	D. $\$ 2.00$ per ticket
2. The school will be selling bags of $\$ 2.50$ per ticket	
candy. They will buy $6 \frac{1}{2}$ lb (pounds)	
of one type of candy and sell it in bags holding $\frac{3}{8}$ lb. - How many candy bags can they fill? - How much candy is left over?	A. 17 bags; $\frac{1}{3}$ lb left

\qquad
\qquad

Number
Unit 2 Line Master 14b

Escape to the Fun Fair (cont'd)

Question	Choices
3. A committee has sourced candy for the bags. They can buy it from Candy Candy Inc, who charge $\$ 2.80$ for $\frac{1}{2} \mathrm{lb}$ (pound). Sweet Dreams sells the same candy.	A. $\$ 1.40, \$ 0.38$
They charge $\$ 1.50$ for $\frac{1}{4}$ lb. What is the price per pound at each store? C. $\$ 0.56, \$ 0.60$ 4.The school pays $\$ 186.49$, including taxes, to rent a cotton candy machine and all the supplies needed to fill 300 bags. They can sell each bag for $\$ 1.50$. The profit is the money earned from the sales less the costs. If they sell all 300 bags, what is their profit? A. $\$ 450$ B. $\$ 113.51$	

\qquad
\qquad

Number
Unit 2 Line Master 14c

Escape to the Fun Fair (cont'd)

Question	Choices
5. People will be able to win prizes by doing a challenge called Target Numbers.	A.,$+ \times,-, \div$
The challenger fills in each blank with	B. $\div, \times,-,+$
an operation (addition, subtraction,	C.,$- \div,+, \times$
multiplication, division) to make the	D.,$+ \div,-, \times$
equations true. Each operation can be	
used only once.	
$\bullet \frac{12}{9} _\frac{1}{3}=\frac{15}{9}$	
$\bullet 32 _0.8=40$	
$\bullet 112 _(-598)=710$	
$\bullet 45 _1.2=54$	

\qquad
\qquad

Number
Unit 2 Line Master 14d

Escape to the Fun Fair (cont'd)

Now that you've collected the supplies, answer these questions correctly to be given digits in the code that will let you escape the gym. Record the digits in the spaces below.

Question	Choices
6. Is this statement true or false? When you add two negative numbers, the sum is always negative.	A. True B. False
7. To work in a booth at the fair, students must complete these 4 skill testing questions. Fill in the blanks with operations or numbers to make each equation true. - $9-(-9)=9$ \qquad (_19) - $34.9 \div 15.7=$ \qquad $\div 157$ - $\frac{3}{5}+\frac{1}{2}+\frac{5}{10}=$ \qquad $+1$ - $\frac{5}{9} \div \frac{1}{9}=$ \qquad	A.,$-+; 3.49 ; \frac{5}{10} ; \frac{5}{9}$ B.,$++; 3.49 ; \frac{1}{2} ; 9$ C.,$+-; 349 ; \frac{3}{5} ; \frac{1}{5}$ D.,$++; 349 ; \frac{3}{5} ; 5$
8. Is this statement true or false? The product of two numbers is always greater than each of the two numbers.	A. True B. False

\qquad
\qquad

Number
Unit 2 Line Master 14e

Escape to the Fun Fair (cont'd)

Question	Choices
9. Tables will be set up for a silent auction along a wall in the gym.	A. 13
The wall is $68 \frac{1}{4} \mathrm{ft}$ (feet) long. Each table is	B. 14
3 ft long.	C. 21
There needs to be a $1 \frac{3}{4} \mathrm{ft}$ space before the	D. 22
first table, between the tables, and after	
the last table.	
How many tables can they fit along the wall?	

The code is

\qquad
\qquad
\qquad .

