Activity 6 Assessment Dilating 2-D Shapes

Dilating 2-D Shapes			
Understands the concept of dilation A dilation is a transformation that enlarges or reduces a shape by a scale factor. The image is not congruent.	Describes the similarity between a dilated image and its original shape I used a protractor to find that corresponding angles, like $\angle \mathrm{L}$ and $\angle \mathrm{L}^{\prime}$, are equal. I counted grid units of corresponding bases and heights to find the same ratio. For example, $\frac{K^{\prime} L^{\prime}}{K L} \text { is } 3 .$	Describes and performs dilations on a grid Dilate rectangle ABCD by a scale factor of 2. I drew a line from the dilation point to vertex A. Then, I extended the length of line to 2 times that length and placed the vertex A^{\prime}. I repeated the process to get rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Describes and performs dilations on a coordinate grid (first quadrant) Dilate $\triangle A B C$ by a scale factor of $\frac{1}{3}$. I drew a line from the dilation point to vertex A. Then, divided the length of line by 3 and placed the vertex A^{\prime}. I repeated the process to get $\Delta A^{\prime} B^{\prime} C^{\prime}$. I noticed that the coordinates of the vertices of the dilated image were one third those of the original triangle, For example, $\mathrm{A}(6,3)$ moves to $\mathrm{A}^{\prime}(2,1)$.

Activity 6 Assessment

 Dilating 2-D Shapes

