\qquad

Algebra
 Unit 3 Line Master 2a
 Coding Algebraic Expressions to Generate Linear Growing Patterns

You will alter existing code to generate various linear growing patterns that are described using algebraic expressions.
To do this, you will alter the rate of change (multiplier) and initial values in the code.

Begin with the following application: https://scratch.mit.edu/projects/795444171/editor/

Note: Like the first code you created, this code uses both variables and lists. In this code, termNumber and termValue are variables, while termValueList and termNumberList are lists.

1. Click on the green flag to execute the code. You will see that two lists are generated and displayed on the stage-one list called termNumberList that contains the term numbers and one list called termValueList that contains the term values.

\qquad

Algebra

Unit 3 Line Master 2b

Coding Algebraic Expressions to

 Generate Linear Growing Patterns (cont'd)For term number 0 , our term value is 0 .
For term number 1 , our term value is 3 .
For term number 2, our term value is 6 .
For term number 3 , our term value is 9 , and so on.

- What operation do we perform on the term number to get the term value?

Did you answer "multiply by 3?" That's correct!
If you aren't certain how we got this answer, look at the relationship between the two sets of data:

By what do you have to multiply 1 to get 3?
By what do you have to multiply 2 to get 6 ?
By what do you have to multiply 3 to get 9 ?
2. Let's take a closer look at the algebraic expression that is used to generate the term values in the code:

The termValue variable is set to: 3 * termNumber + 0 In coding, an "*" indicates multiplication, so this can be thought of as $3 x+0$, where x is the termNumber.
a) In the code, alter the expression to the following:

set tramvave $-{ }^{\text {to }}$ (4) tremNumber +0

Before executing the code, predict what will be output in the two lists.
b) Click on the green flag to execute the code.

Was your prediction correct?
\qquad

```
Algebra
Unit 3 Line Master 2c
```


Coding Algebraic Expressions to Generate Linear Growing Patterns (cont'd)

3. Alter the expression in the code to generate each list of numbers. For each set of values, write down the expression you use to generate the term values. The first expression has been included for you.
a) 5 * termNumber +0

b) \qquad
c) \qquad

4. Now, let's alter the expression in the code to use an initial value of 2 , so, that at termNumber 0 , the termValue will start at 2.
The new expression is: $\mathbf{3}$ * termNumber + 2
a) Alter the Scratch code now to reflect this change:

Before executing the code, predict what will be outputted in the lists.
b) Click on the green flag to execute the code. Was your prediction correct?
\qquad

```
Algebra
Unit 3 Line Master 2d
```


Coding Algebraic Expressions to Generate Linear Growing Patterns (cont'd)

5. Alter the expression in the code to generate the lists of numbers below. For each set of values, write down the expression you use to generate the term numbers on the blank line.
Hint: The initial value is the value of term 0 and is listed as termNumber 0 . The constant rate, or multiplier, is the amount by which the values in the termValueList are changing.

Constant rate (or multiplier) Initial value

a)

b) \qquad

c) \qquad

6. Change the expression back to: $\mathbf{3}$ * termNumber + 2

Now, you'll alter the code so that you output the term numbers and values all the way to term number 10.

To do this, change the defined count in the repeat to termNumber $\mathbf{> 1 0}$. This will ensure the term values will be output up to and including term number 10.

defined count: In coding, the number of times instructions are repeated, based on a predefined value or until a condition has been met.
\qquad
\qquad

```
Algebra
Unit 3 Line Master 2e
```

Coding Algebraic Expressions to Generate Linear Growing Patterns (cont'd)
7. Alter the expression and the defined count in the code to generate the following lists of numbers. For each set of values, write down the expression you use to generate the term values on the blank line. Write the number you use for the defined count as well.
a) \qquad
defined count:

b) \qquad
defined count:

c) \qquad defined count:

8. Finally, let's alter the code so that the termNumber variable increases by an amount other than 1. That is, we will alter the change termNumber by 1 block.

Let's start with our original expression, 3 * termNumber + 2, but output up to term number 100, increasing our termNumber by 10 each time. The altered code and output are shown on the next page.
\qquad
\qquad

9. Alter the code to output the following lists of numbers.

For each set of values, write down the expression you use to generate the term values on the blank line.
What expression did you use in the repeat until block?
By what did you increase the termNumber variable each time?
a) \qquad
defined count: \qquad

b) \qquad
defined count: \qquad

termNumberList	termValueList
10	15
25	255
310	3105
415	4155
520	$5 \longdiv { 2 0 5 }$
$6 \quad 25$	6255
730	7305
835	8355
$9 \longdiv { 4 0 }$	$9 \longdiv { 4 0 5 }$
1045	$1 0 \longdiv { 4 5 5 }$
1150	11505

