Activity 10 Assessment

Solving and Graphing Two-Step Inequalities

Solving and Graphing Two-Step Inequalities			
Expresses inequalities in words and with algebraic expressions "If 3 times a number is less than 12, I can write $3 x<12$. If $2 m+5 \geq 11$, I know that this means that twice a number, increased by 5 is greater than or equal to 11."	Determines whether a given number is part of the solution set for an inequality "I'm going to find the value of the left side of the inequality $2 m+5 \geq 11$, when m is 3 . $\begin{aligned} 2(3)+5 & =6+5 \\ & =11 \end{aligned}$ This is equal to the number on the right side, so 3 is part of the solution set."	Uses inverse relationships to solve two-step inequalities involving whole numbers $\text { Solve } 2 m+5 \geq 11$ "For the equation $2 m+5=11, \text { I can write }$ $m \rightarrow \times 2 \rightarrow+5 \rightarrow 11$ $3 \leftarrow \div 2 \leftarrow-5 \leftarrow 11 . "$ The solution to the equation is $m=3$. What happens when $m=4$? $\begin{aligned} 2 m+5 & =2(4)+5 \\ & =8+5 \\ & =13 \end{aligned}$ This is greater than 11 , so 4 is part of the solution set. I know the solution is $m \geq 3$.	Graphs the solution to a two-step inequality on a number line "For the inequality $2 m+5 \geq 11$, my solution was $m \geq 3$. I draw a solid circle at $m=3$ because it is part of the solution. I draw a line extending to the right to show that all the numbers greater than 3 are also part of the solution."
Observations/Documentation			

