Working with Linear Patterns			
Determines missing terms in a pattern Determine the numbers to complete this pattern. 85, 79, 73, \qquad , 61, \qquad "Every term is 6 less than the previous term. So, I can find the missing terms by subtracting. The pattern is: $85,79,73,67,61,55^{\prime \prime}$	Uses a pattern rule to predict terms far ahead in a pattern "The pattern rule is $3 n+1$. To determine how many tiles would be in term 50 , I substitute 50 for n. $\begin{aligned} 3(50)+1 & =150+1 \\ & =151 \end{aligned}$ There would be 151 tiles in term 50."	Uses a pattern rule to determine the term number given a term value "The pattern rule is $3 n+1$. To determine which term has 100 tiles, I need to find a value for n that makes $3 n+1=100$. I know that $3 \times 33=99$, and $99+1$ $=100$. So, the answer is term 33."	Creates and uses an algebraic pattern rule to model and solve a problem Maha pays $\$ 20$ every month for a gym membership plus $\$ 3$ for every class. If Maha pays \$65 one month, how many classes did they attend? "I can represent this with the expression $3 n+20$ where n is the number of classes. I need to find a value for n so that $\begin{aligned} & 3 n+20=65 . \text { l'll try } n=10 . \\ & \begin{aligned} 3(10)+20 & =30+20 \\ & =50 \end{aligned} \end{aligned}$ This is too small. I'll try $n=15$. $\begin{aligned} 3(15)+20 & =45+20 \\ & =65 \end{aligned}$ Maha went to 15 classes that month."
Observations/Documentation			

