## Lesson 4 Assessment

Determining the Area of Triangles and Parallelograms

| Determining the Area of Triangles and Parallelograms |  |  |  |
| :---: | :---: | :---: | :---: |
| Explains the relationships between the area of a rectangle and a triangle <br> I drew a diagonal of the rectangle and divided the rectangle in two equal triangles. <br> Area rectangle $=50 \mathrm{~cm}^{2}$ <br> Area triangle $=25 \mathrm{~cm}^{2}$ <br> So, the area of a triangle is one-half the area of a rectangle. $A=b \times h \div 2$ | Uses triangle area formula to determine a missing measure <br> What is the base of a triangle with area of $36 \mathrm{~cm}^{2}$ and height of 6 cm ? <br> I used the area formula for a triangle. $\begin{aligned} A & =\frac{1}{2} b h \\ 36 & =\frac{1}{2} \times b \times 6 \\ 36 & =3 \times b \\ \frac{36}{3} & =b \\ b & =12 \end{aligned}$ <br> The base of the triangle is 12 cm . | Explains the relationships between the area of a rectangle and a parallelogram <br> I cut a triangle from end of the parallelogram and moved it to the other end. <br> The area of the parallelogram was rearranged to form a rectangle, and no area was lost. So, the area of a parallelogram is the same as the area of a rectangle, $20 \mathrm{~cm}^{2}$. $A=b \times h$ | Uses parallelogram area formula to determine a missing measure <br> What is the base of a parallelogram with area of $36 \mathrm{~cm}^{2}$ and height of 6 cm ? $\begin{aligned} A & =b h \\ 36 & =b \times 6 \\ \frac{36}{6} & =b \\ b & =6 \end{aligned}$ <br> The base of the parallelogram is 6 cm . |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Lesson 4 Assessment
Determining the Area of Triangles and Parallelograms

