math logy

Correlation of Nunavut Program of Studies with Mathology Grade 5
 (Number)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Develop number sense.			
Specific Outcomes 1. Represent and describe whole numbers to 1000000.	Number Unit 1: Number Relationships and Place Value 1: Representing Larger Numbers 2: Comparing Larger Numbers 4: Consolidation of Number Relationships and Place Value	Unit 2 Questions 1, 2, 3, 4, 6, 7, 8, $9,10,11,15$ (pp. 8-11, 13)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Extends whole number understanding to 1 000000. Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates whole numbers based on place-value understanding and records using <, $=$, > symbols. Estimating quantities and numbers - Rounds whole numbers using place-value understanding (e.g., 4736 can be rounded to 5000, 4700, 4740). Decomposing and composing numbers to investigate equivalencies - Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units

			- Writes and reads whole numbers in multiple forms (e.g., 1358; one thousand three hundred fifty-eight; $1000+300+50+8$). - Understands that the value of a digit is ten times the value of the same digit one place to the right.
2. Use estimation strategies in problem-solving contexts.	Number Unit 1: Number Relationships and Place Value 3: Estimating to Solve Problems Number Unit 2: Fluency with Addition and Subtraction 5: Estimating Sums and Differences Number Unit 4: Fluency with Multiplication and Division 20: Using Estimation for Multiplication and Division	Unit 2 Questions 5, 12, 13, 14 (pp. 9, 12) Unit 3 Questions 1, 2, 3, 5 (pp. 14-15, 17) Unit 9 Questions 1, 2, 3, 4, 5, 12 (pp. 52-54, 57) Unit 12 Question 4 (p. 73) Unit 13 Question 3 (p. 81)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates whole numbers based on place-value understanding and records using <, =, > symbols. Estimating quantities and numbers - Rounds whole numbers using place-value understanding (e.g., 4736 can be rounded to 5000, 4700, 4740). Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Extends whole number computation models to larger numbers. Developing fluency of operations - Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
3. Apply mental mathematics strategies and number properties in order to understand and recall basic multiplication facts (multiplication tables) to 81 and related division facts.	Number Unit 4: Fluency with Multiplication and Division 19: Relating Multiplication and Division Facts 25: Consolidation of Fluency with Multiplication and Division	Unit 13 Questions 1, 2 (pp. 80-81)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Recognizes and generates equivalent

			numerical expressions using commutative and associative properties. - Understands operational relationships (e.g., inverse relationship between multiplication/division, addition/subtraction). - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7)$ Developing fluency of operations - Fluently recalls multiplication and division facts to 100.
4. Apply mental mathematics strategies for multiplication.	Number Unit 4: Fluency with Multiplication and Division 20: Using Estimation for Multiplication and Division 21: Strategies for Multiplying Larger Numbers 25: Consolidation of Fluency with Multiplication and Division	Unit 13 Questions 5, 9, 13 (pp. 81, 83, 85)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Understands the effect of multiplying and dividing whole numbers by powers of 10 . - Extends whole number computation models to larger numbers.
5. Demonstrate, with and without concrete materials, an understanding of multiplication (2-digit by 2-digit) to solve problems.	Number Unit 4: Fluency with Multiplication and Division 22: Multiplying Whole Numbers 25: Consolidation of Fluency with Multiplication and Division	Unit 13 Questions 3, 4, 5, 7, 8, 9 , 13 (pp. 81-83, 85)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Extends whole number computation models to larger numbers. Developing fluency of operations - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
6. Demonstrate, with and without concrete materials, an understanding of division (3-digit by 1-digit), and interpret remainders to solve problems.	Number Unit 4: Fluency with Multiplication and Division 23: Dividing Larger Numbers 25: Consolidation of Fluency with Multiplication and Division	Unit 13 Questions 3, 6, 7, 9, 14 (pp. 81-83, 85)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Extends whole number computation models to larger numbers. Developing fluency of operations - Solves whole number computation using efficient strategies (e.g., mental computation,

Mathology 5 Curriculum Correlation - Nunavut
Pearson

			algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
7. Demonstrate an understanding of fractions by using concrete, pictorial and symbolic representations to: - create sets of equivalent fractions - compare fractions with like and unlike denominators.	Number Unit 3: Fractions and Decimals 10: Equivalent Fractions 12: Comparing and Ordering Fractions 18: Consolidation of Fractions and Decimals	Unit 7 Questions 1, 2, 3, 4, 8, 9, 12 (pp. 42-43, 45, 47)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates fractions with the same numerator or denominator using reasoning (e.g., $\frac{3}{5}>\frac{3}{6}$ because fifths are larger parts). - Compares, orders, and locates fractions using flexible strategies (e.g., comparing models; creating common denominators or numerators). Estimating quantities and numbers - Estimates the location of decimals and fractions on a number line. - Estimates the size and magnitude of fractions by comparing to benchmarks. Decomposing and composing numbers to investigate equivalencies - Generates and identifies equivalent fractions using flexible strategies (e.g., represents the same part of a whole; same part of a set; same location on a number line). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. - Partitions fractional parts into smaller fractional units (e.g., partitions halves into thirds to create sixths).
8. Describe and represent decimals (tenths, hundredths, thousandths), concretely, pictorially and symbolically.	Number Unit 3: Fractions and Decimals 13: Representing Decimals 18: Consolidation of Fractions and Decimals	Unit 7 Questions 5, 6, 7, 12 (pp. 44, 47)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers. - Extends decimal number understanding to thousandths. Big Idea: Numbers are related in many ways. Decomposing and composing numbers to

Mathology 5 Curriculum Correlation - Nunavut
Pearson

			investigate equivalencies - Composes and decomposes decimal numbers using standard and non-standard partitioning (e.g., 1.6 is 16 tenths or 0.16 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is onetenth the value of the same digit one place to the left. - Writes and reads decimal numbers in multiple forms (i.e., numerals, number names, expanded form).
9. Relate decimals to fractions and fractions to decimals (to thousandths).	Number Unit 3: Fractions and Decimals 13: Representing Decimals 16: Relating Fractions and Decimals 18: Consolidation of Fractions and Decimals	Unit 7 Questions 10, 12 (pp. 46-47)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Models and explains the relationship between a fraction and its equivalent decimal form (e.g., $\frac{2}{5}=\frac{4}{10}=0.4$). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Uses fractions with denominators of 10 to develop decimal fraction understanding and notation (e.g., five-tenths is $\frac{5}{10}$ or 0.5). - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is onetenth the value of the same digit one place to the left. - Writes and reads decimal numbers in

			multiple forms (i.e., numerals, number names, expanded form).
10. Compare and order decimals (to thousandths) by using: - benchmarks - place value - equivalent decimals.	Number Unit 3: Fractions and Decimals 15: Comparing and Ordering Decimals 18: Consolidation of Fractions and Decimals	Unit 7 Questions 8, 9, 12 (pp. 45, 47)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates decimal numbers using place-value understanding. Estimating quantities and numbers - Estimates the location of decimals and fractions on a number line. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is onetenth the value of the same digit one place to the left.
11. Demonstrate an understanding of addition and subtraction of decimals (limited to thousandths).	Number Unit 5: Operations with Fractions and Decimals 26: Estimating Sums and Differences with Decimals 27: Adding with Decimal Numbers 28: Subtracting with Decimal Numbers 32: Consolidation of Operations with Fractions and Decimals	Unit 9 Question 1, 2, 3, 4, 5, 12 (pp. 52-54, 57) Unit 12 Questions 1, 3, 4 (pp. 72-73)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Estimates sums and differences of decimal numbers (e.g., calculating cost of transactions involving dollars and cents). - Solves decimal number computation using efficient strategies.

mathology

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Patterns and Relations: Patterns)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Use patterns to describe the world and to solve problems.			
Specific Outcomes 1. Determine the pattern rule to make predictions about subsequent elements.	Patterning Unit 1: Patterning 1: Investigating Geometric Patterns 2: Investigating Number Patterns 3: Using Pattern Rules to Solve Problems 4: Consolidation of Patterning	Unit 1 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (pp. 2-7)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Describes, generates, extends, translates, and corrects number and shape patterns that follow a predetermined rule. - Uses multiple approaches to model situations involving repetition (i.e., repeating patterns) and change (i.e., increasing/decreasing patterns) (e.g., using objects, tables, graphs, symbols, loops and nested loops in coding). - Represents a numeric or shape pattern using a table of values by pairing the term value with a term number. - Generates a visual model to represent a simple number pattern. - Represents a mathematical context or problem with expressions and equations using variables to represent unknowns. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g.,

Pearson

| | | given: $16,22,28,34, \ldots$. Start at 16 and add 6
 each time).
 - Describes numeric and shape patterns using
 words and numbers.
 - Predicts the value of a given element in a
 numeric or shape pattern using pattern rules. |
| :--- | :--- | :--- | :--- |

Mathology 5 Curriculum Correlation - Nunavut

math logy

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Patterns and Relations: Variables and Equations)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Represent algebraic expressions in multiple ways.			
Specific Outcomes 2. Express a given problem as an equation in which a letter variable is used to represent an unknown number (limited to whole numbers).	Patterning Unit 2: Variables and Equations 5: Using Variables 6: Solving Addition and Subtraction Equations 7: Solving Multiplication and Division Equations 8: Using Equations to Solve Problems 10: Consolidation of Variables and Equations	Unit 16 Questions 2, 5, 6, 7, 8, 9 (pp. 99-102)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Expresses a one-step mathematical problem as an equation using a symbol or letter to represent an unknown number (e.g., Sena had some tokens and used four. She has seven left: $\square-4=7$). Using variables, algebraic expressions, and equations to represent mathematical relations - Understands an unknown quantity (i.e., variable) may be represented by a symbol or letter (e.g., $13-\square=8 ; 4 n=12$). - Flexibly uses symbols and letters to represent unknown quantities in equations (e.g., knows that $4+\square=7 ; 4+x=7$; and $4+$ $y=7$ all represent the same equation with \square, x, and y representing the same value). - Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$).

Pearson

			- Understands a variable as a changing quantity (e.g., $5 s$, where s can be any value).
3. Solve problems involving single-variable, one-step equations with whole number coefficients and whole number solutions.	Patterning Unit 2: Variables and Equations 5: Using Variables 6: Solving Addition and Subtraction Equations 7: Solving Multiplication and Division Equations 8: Using Equations to Solve Problems 10: Consolidation of Variables and Equations	Unit 16 Questions 3a, 3c, 5, 7, 8, 9, 13 (pp. 100-102, 104)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Determines an unknown number in simple one-step equations using different strategies (e.g., $n \times 3=12 ; 13-\square=8$). - Uses arithmetic properties to investigate and transform one-step addition and multiplication equations (e.g., $5+4=9$ and $5+a=9$ have the same structure and can be rearranged in similar ways to maintain equality: $4+5=9$ and $a+5=9$). - Uses arithmetic properties to investigate and transform one-step subtraction and division equations (e.g., $12-5=7$ and $12-b$ $=7$ have the same structure and can be rearranged in similar ways to maintain equality: $12-7=5$ and $12-7=b$). Using variables, algebraic expressions, and equations to represent mathematical relations - Understands an unknown quantity (i.e., variable) may be represented by a symbol or letter (e.g., $13-\square=8 ; 4 n=12$). - Flexibly uses symbols and letters to represent unknown quantities in equations (e.g., knows that $4+\square=7 ; 4+x=7$; and $4+$ $y=7$ all represent the same equation with \square, x, and y representing the same value). - Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$).

			Understands a variable as a changing quantity (e.g., $5 s$, where s can be any value).

Mathology 5 Curriculum Correlation - Nunavut

mâthôlogy

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Shape and Space: Measurement)

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Curriculum Expectations } & \text { Grade 5 Mathology.ca } & \text { Mathology Practice Workbook 5 } & \begin{array}{l}\text { Pearson Canada Grades 4-6 Mathematics } \\
\text { Learning Progression }\end{array} \\
\hline \begin{array}{l}\text { General Outcome } \\
\text { Use direct and indirect measurement to solve problems. }\end{array} & \begin{array}{l}\text { Geometry Unit 1A: 2-D Shapes } \\
\text { and 3-D Solids } \\
\text { 2: Investigating Quadrilaterals } \\
\text { 4: Consolidation of 2-D Shapes and } \\
\text { 1. Identify } 90^{\circ} \text { angles. }\end{array} & \begin{array}{l}\text { Unit 4 Questions 1, 2, 5, 10 } \\
\text { (pp. 22-24, 27) } \\
\text { 3-D Solids }\end{array} & \begin{array}{l}\text { Unit 5 Questions 7, 9, 11 } \\
\text { (pp. 31-32, 34) } \\
\text { analyzed and classified in different ways by } \\
\text { their attributes. } \\
\text { Investigating geometric attributes and } \\
\text { properties of 2-D shapes and 3-D solids } \\
\text { - Understands angle as a geometric figure } \\
\text { formed from two rays or line segments } \\
\text { sharing a common endpoint. }\end{array} \\
\hline \begin{array}{l}\text { 2. Design and construct different } \\
\text { rectangles, given either perimeter } \\
\text { or area, or both (whole numbers), } \\
\text { and make generalizations. }\end{array} & \begin{array}{l}\text { Measurement Unit 1: Length, } \\
\text { Perimeter, and Area } \\
\text { 4: Relating the Perimeter and Area } \\
\text { of Rectangles } \\
\text { 6: Consolidation of Length, } \\
\text { Perimeter, and Area }\end{array} & \begin{array}{l}\text { Unit 14 Questions 5, 6, 7, 8, 9, 12 } \\
\text { (pp. 87-90, 92) }\end{array} & \begin{array}{l}\text { Big Idea: Assigning a unit to a continuous } \\
\text { attribute allows us to measure and make } \\
\text { comparisons. } \\
\text { Understanding relationships among }\end{array}
$$

measured units\end{array}\right]\)| - Develops and generalizes strategies to |
| :--- |
| compute area and perimeter of rectangles. |
| - Investigates the relationship between |
| perimeter and area in rectangles. |

between mm and m units.	6: Consolidation of Length, Perimeter, and Area		Understanding relationships among measured units - Understands and applies the multiplicative relationship among metric units of length, mass, and capacity.
4. Demonstrate an understanding of volume by: - selecting and justifying referents for cm^{3} or m^{3} units - estimating volume, using referents for cm^{3} or m^{3} - measuring and recording volume (cm^{3} or m^{3}) - constructing right rectangular prisms for a given volume.	Measurement Unit 2: Mass, Capacity, and Volume 10: Investigating Volume 11: Investigating Volume with Rectangular Prisms 12: Consolidation of Mass, Capacity, and Volume	Unit 15 Questions 8, 9, 10, 11, 12, 13 (pp. 95-98)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands volume and capacity as attributes of 3-D objects that can be measured and compared. Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Chooses the most appropriate unit to measure a given attribute of an object (e.g., classroom area measured in square metres). - Develops understanding of a unit cube and uses unit cubes to estimate and measure volume of 3-D objects. - Measures, constructs, and estimates volume using standard cubic units (e.g., cubic centimetre). Understanding relationships among measured units - Understands and applies the multiplicative relationship among metric units of length, mass, and capacity.
5. Demonstrate an understanding of capacity by: - describing the relationship between mL and L	Measurement Unit 2: Mass, Capacity, and Volume 8: Investigating Capacity 12: Consolidation of Mass, Capacity, and Volume	Unit 15 Questions 4, 5, 6, 7 (pp. 94-95)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands volume and capacity as attributes of 3-D objects that can be

Mathology 5 Curriculum Correlation - Nunavut
Pearson

- selecting and justifying referents for mL or L units
- estimating capacity, using referents for mL or L
- measuring and recording capacity (mL or L).
measured and compared.
Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons.
Selecting and using units to estimate,
measure, construct, and make comparisons
- Chooses the most appropriate unit to
measure a given attribute of an object (e.g., classroom area measured in square metres).

Understanding relationships among

 measured units- Understands and applies the multiplicative relationship among metric units of length, mass, and capacity.

mathology

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Shape and Space: 3-D Objects and 2-D Shapes)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.			
Specific Outcomes 6. Describe and provide examples of edges and faces of 3-D objects, and sides of 2-D shapes that are: - parallel - intersecting - perpendicular - vertical - horizontal.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 1: Properties of 2-D Shapes and 3- D Objects 2: Investigating Quadrilaterals 4: Consolidation of 2-D Shapes and 3-D Solids	Unit 4 Questions 1, 2, 4, 9, 10 (pp. 22-24, 26-27)	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies polygons based on side attributes (e.g., parallel, perpendicular, regular/irregular). - Sorts, describes, constructs, and classifies 3-D objects based on edges, faces, vertices, and angles (e.g., prisms, pyramids). Investigating 2-D shapes, 3-D solids, and their attributes through composition and decomposition - Identifies types of lines in 2-D images (e.g., parallel, intersecting, perpendicular). - Investigates 2-D shapes that do or do not have parallel and perpendicular lines.
7. Identify and sort quadrilaterals, including: - rectangles - squares - trapezoids - parallelograms	Geometry Unit 1A: 2-D Shapes and 3-D Solids 2: Investigating Quadrilaterals 4: Consolidation of 2-D Shapes and 3-D Solids	Unit 4 Questions 1, 2, 3, 4, 5, 10 (pp. 22-24, 27)	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids

| • rhombuses
 according to their attributes. | | - Identifies and draws parallel, intersecting,
 and perpendicular lines.
 - Sorts, describes, constructs, and classifies
 polygons based on side attributes (e.g.,
 parallel, perpendicular, regular/irregular).
 - Sorts, describes, classifies 2-D shapes
 based on their geometric properties (e.g.,
 side lengths, angles, diagonals).
 - Classifies 2-D shapes within a hierarchy
 based on their properties (e.g., rectangles
 are a subset of parallelograms).
 Investigating 2-D shapes, 3-D solids, and
 their attributes through composition and
 decomposition |
| :--- | :--- | :--- | :--- |
| $-\quad$ Identifies types of lines in 2-D images (e.g., | | |
| parallel, intersecting, perpendicular). | | |
| - Investigates 2-D shapes that do or do not | | |
| have parallel and perpendicular lines. | | |

math logy

Correlation of Nunavut Program of Studies with Mathology Grade 5
 (Shape and Space: Transformations)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Describe and analyze position and motion of objects and shapes.			
Specific Outcomes 8. Identify and describe a single transformation, including a translation, rotation and reflection of 2-D shapes.	Geometry Unit 2A: Transformations 5: Investigating Translations 6: Investigating Reflections 7: Investigating Rotations 8: Identifying Transformations 9: Consolidation of Transformations	Unit 5 Questions 5, 7, 8, 10 (pp. 30-33)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Identifies, describes, and performs single transformations (i.e., translation, reflection, rotation) on 2-D shapes.
9. Perform, concretely, a single transformation (translation, rotation or reflection) of a 2-D shape, and draw the image.	Geometry Unit 2A: Transformations 5: Investigating Translations 6: Investigating Reflections 7: Investigating Rotations 8: Identifying Transformations 9: Consolidation of Transformations	Unit 5 Questions 4, 6, 9, 10 (pp. 30-33)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Identifies, describes, and performs single transformations (i.e., translation, reflection, rotation) on 2-D shapes.

mathôlogy

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Statistics and Probability: Data Analysis)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Collect, display and analyze data to solve problems.			
Specific Outcomes 1. Differentiate between first-hand and second-hand data.	Data Management Unit 1A: Data Management 1: Exploring First-Hand and Second-Hand Data	Unit 10 Question 3 (p.61)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Collecting data and organizing it into categories - Differentiates between primary (i.e., firsthand) and secondary (i.e., second-hand) data sources.
2. Construct and interpret double bar graphs to draw conclusions.	Data Management Unit 1A: Data Management 2: Constructing Double-Bar Graphs 3: Interpreting Double-Bar Graphs 4: Consolidation of Data Management	Unit 10 Questions 4, 8 (pp. 62, 65)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Creating graphical displays of collected data - Represents data graphically using many-toone correspondence with appropriate scales and intervals (e.g., each symbol on pictograph represents 10 people). - Visually represents two or more data sets

Pearson
$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { (e.g., double bar chart, stacked bar graph, } \\ \text { multi-line graph, multi-column table). } \\ \text { Reading and interpreting data displays and } \\ \text { analyzing variability } \\ \text { - Reads and interprets data displays using } \\ \text { many-to-one correspondence. } \\ \text { Drawing conclusions by making inferences } \\ \text { and justifying decisions based on data } \\ \text { collected. } \\ \text { - Draws conclusions based on data } \\ \text { presented. }\end{array} \\ \text { - Interprets the results of data presented } \\ \text { graphically from primary (e.g., class survey) } \\ \text { and secondary (e.g., online news reports) } \\ \text { sources. }\end{array}\right\}$

mathology

Correlation of Nunavut Program of Studies with Mathology Grade 5 (Statistics and Probability: Chance and Uncertainty)

Curriculum Expectations	Grade 5 Mathology.ca	Mathology Practice Workbook 5	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome			
Specific Outcomes 3. Describe the likelihood of a single outcome, using words such as: - impossible - possible - certain.	Data Management Unit 2A: Probability 5: Describing Likelihood of Events 6: Conducting Experiments 7: Designing Experiments 8: Consolidation of Probability	Unit 11 Questions 1, 2, 5, 6, 7, 8, 9 (pp. 66-71)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Using the language and tools of chance to describe and predict events - Locates the likelihood of outcomes on a vocabulary-based probability continuum (e.g., impossible, unlikely, likely, certain).
4. Compare the likelihoods of two possible outcomes, using words such as: - less likely - equally likely - more likely.	Data Management Unit 2A: Probability 5: Describing Likelihood of Events 6: Conducting Experiments 7: Designing Experiments 8: Consolidation of Probability	Unit 11 Questions 3, 4, 5, 7, 8, 9 (pp. 67-68, 70-71)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Using the language and tools of chance to describe and predict events - Distinguishes between equally likely events (e.g., heads or tails on a fair coin) and unequally likely events (e.g., spinner with differently sized sections). - Identifies the sample space of independent

Pearson

			events in an experiment (e.g., flipping a cup, drawing a coloured cube from a bag). -nvestigates and calculates the experimental probability (i.e., relative frequency) of simple events (e.g., 3 heads in 5 coin tosses is $\frac{3}{5}$).

Unit 6: Coding Not required, but recommended
Unit 12: Financial Literacy Not required, but recommended

