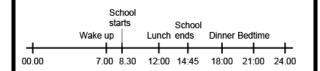
# **Activity 16 Assessment** Exploring Elapsed Time

## **Using Measurement of Time**

Tells time using fractions.






Tells time using one- and five-minute intervals on analogue and digital clocks.





"Both the analogue and digital clocks read: Seven fifty-eight, or 2 minutes before 8. In 2 minutes, the clocks will read 8:00." Tells time using 24-hour clocks.



"I created a timeline to record the times of my daily activities using a 24-hour clock. I converted 12hour p.m. times to 24-hour times."

### **Observations/Documentation**

## Activity 16 Assessment Exploring Elapsed Time

### **Using Measurement of Time (cont'd)**

Solves problems using elapsed time and the relationships among units of time.

Buses leave at 14:15, 14:26, 14:47, and 14:58. Each trip back takes 1 hour and 11 minutes. Dara needs to be back by 3:45 p.m. Which buses can Dara take?

"I converted 3:45 p.m. to 24-hour time by adding 12 hours: 15:45. I added 1 hour and 11 minutes to each departure time to get the arrival time: 15:26, 15:37, 15:58, 16:09. Two of the buses arrive before 15:45. So, Dara can take the 14:15 or 14:26 bus."

Reads and records calendar dates in different formats.

| September                          |                                                       |                                   |                   |                            |                             |                                      |
|------------------------------------|-------------------------------------------------------|-----------------------------------|-------------------|----------------------------|-----------------------------|--------------------------------------|
| Sunday                             | Monday                                                | Tuesday                           | Wednesday         | Thursday                   | Friday                      | Saturday                             |
| 1                                  | 2<br>Labour<br>Day                                    | Back to<br>School                 | 4                 | 5<br>Drop-in<br>badminton  | Movie<br>Night<br>6:30 p.m. | 7<br>Lunch<br>with dad<br>12:00 p.m. |
| 8<br>Family<br>Dinner<br>5:30 p.m. | 9                                                     | 10                                | 11<br>Picture Day | 12<br>Drop-in<br>badminton | 13                          | 14                                   |
| 15                                 | 16<br>Dance class<br>5 p.m.                           | 17<br>Project Due<br>All About Me | 18                | 19<br>No<br>badminton      | 20<br>Book Club<br>at lunch | 21<br>Aunt Jen's<br>birthday         |
| 22                                 | 23<br>Dence class<br>5 p.m.                           | 24<br>Study for<br>Math Quiz      | 25<br>Math Quiz   | 26<br>Drop-in<br>badminton | 27                          | 28<br>Nature Walk<br>(all day)       |
| 29                                 | 30<br>National Day<br>for Truth and<br>Reconciliation | )                                 |                   |                            |                             |                                      |

"The National Day for Truth and Reconciliation is on September 30, 2024.

That date could also be recorded as: 09/30/2024, 2024/09/30, or 30/09/2024."

Flexibly solves problems involving time using various strategies and the relationships among units.

Over a week, Axel got 56 h of sleep, Sadie got 3000 min of sleep, and Piper got  $2\frac{1}{2}$  days of sleep.

Who got the most sleep?

"I converted all the times to hours. Sadie: 60 min = 1 h, and 3000 min ÷ 60 min = 50.

So, 3000 min = 50 h.

Piper: 1 day = 24 h, 2 days = 48 h, and one-half of a day is 24 h  $\div$  2 = 12 h.

So, 
$$2\frac{1}{2}$$
 days = 48 h + 12 h = 60 h.

60 h > 56 h > 50 h. Piper got the most sleep."

### **Observations/Documentation**