Measurement

Activity 13 Assessment

Telling Time in One- and Five-Minute Intervals

Using Measurement of Time		
Tells time using fractions. "It is quarter to three or two forty-five."	Tells time using one- and five-minute intervals on analogue and digital clocks. 7:58 "Both the analogue and digital clocks read: Seven fifty-eight, or 2 minutes before 8 . In 2 minutes, the clocks will read 8:00."	Tells time using 24-hour clocks. "I created a timeline to record the times of my daily activities using a 24 -hour clock. I converted 12hour p.m. times to 24 -hour times."
Observations/Documentation		

Activity 13 Assessment

 Telling Time in One- and Five-Minute Intervals| Using Measurement of Time (cont'd) | | |
| :---: | :---: | :---: |
| Solves problems using elapsed time and the relationships among units of time.
 Buses leave at 14:15, 14:26, 14:47, and 14:58. Each trip back takes 1 hour and 11 minutes. Dara needs to be back by $3: 45$ p.m. Which buses can Dara take?
 "I converted $3: 45$ p.m. to 24 -hour time by adding 12 hours: 15:45. I added 1 hour and 11 minutes to each departure time to get the arrival time: 15:26, 15:37, 15:58, 16:09. Two of the buses arrive before 15:45. So, Dara can take the 14:15 or $14: 26$ bus." | Reads and records calendar dates in different formats.
 "The National Day for Truth and Reconciliation is on September 30, 2024.
 That date could also be recorded as: 09/30/2024, 2024/09/30, or 30/09/2024." | Flexibly solves problems involving time using various strategies and the relationships among units.
 Over a week, Axel got 56 h of sleep, Sadie got 3000 min of sleep, and Piper got $2 \frac{1}{2}$ days of sleep. Who got the most sleep?
 "I converted all the times to hours. Sadie: $60 \mathrm{~min}=$ 1 h , and $3000 \mathrm{~min} \div 60 \mathrm{~min}=50$. $\text { So, } 3000 \mathrm{~min}=50 \mathrm{~h} \text {. }$
 Piper: 1 day $=24 \mathrm{~h}, 2$ days $=48 \mathrm{~h}$, and one-half of a day is $24 \mathrm{~h} \div 2=12 \mathrm{~h}$.
 So, $2 \frac{1}{2}$ days $=48 \mathrm{~h}+12 \mathrm{~h}=60 \mathrm{~h}$.
 $60 \mathrm{~h}>56 \mathrm{~h}>50 \mathrm{~h}$.
 Piper got the most sleep." |
| Observations/Documentation | | |
| | | |

