## marsolology

## Mathology Grade 5 Correlation (Number) - Alberta Curriculum

Note: A Readiness Task precedes each unit and determines students' readiness for the upcoming lessons.

## Organizing Idea:

Number: Quantity is measured with numbers that enable counting, labelling, comparing, and operating.

| Guiding Question: How can the infinite nature of place value enhance our insight into number? Learning Outcome: Students analyze patterns in place value. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| A number expressed with more decimal places is more precise. <br> A zero in the rightmost place of a decimal number does not change the | Place value symmetry extends infinitely to the left and right of the ones place. | Relate the names of place values that are the same number of places to the left and right of the ones place. | Number Unit 1: Number Relationships and Place Value <br> 1: Representing Numbers to 10000000 <br> 2: Representing Numbers in Different Forms <br> 4: Consolidation <br> Number Unit 3: Fractions, Decimals, and Ratios <br> 12: Representing Decimals <br> 15: Consolidation | N/A |
| value of the number. <br> There are infinitely many decimal numbers between any two decimal numbers. |  | Express numbers within 10000 000, including decimal numbers to thousandths, using words and numerals. | Number Unit 1: Number Relationships and Place Value <br> 1: Representing Numbers to 10000000 <br> 2: Representing Numbers in Different Forms <br> 4: Consolidation <br> Number Unit 3: Fractions, Decimals, and Ratios <br> 12: Representing Decimals <br> 15: Consolidation | Unit 2 Questions 1, 2, 3, 4, 6, 7, 15 <br> (pp. 8-9, 13) <br> Unit 7 Question 6 (p. 44) |


|  |  | Relate a decimal number to its position on the number line. | Number Unit 3: Fractions, Decimals, and Ratios <br> 13: Comparing and Ordering DecimalsV <br> 15: Consolidation | Unit 7 Questions 8, 9 (p. 45) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Determine a decimal number between any two other decimal numbers | Number Unit 3: Fractions, Decimals, and Ratios <br> 13: Comparing and Ordering Decimals <br> 15: Consolidation | Unit 7 Question 8 (p. 45) |
|  |  | Compare and order numbers, including decimal numbers. | Number Unit 1: Number Relationships and Place Value <br> 1: Representing Numbers to 10000000 <br> 3: Comparing and Rounding Numbers <br> 4: Consolidation <br> Number Unit 3: Fractions, Decimals, and Ratios <br> 13: Comparing and Ordering Decimals <br> 15: Consolidation | Unit 2 Questions 8, 10, 11, 15 (pp. 10-11, 13) <br> Unit 7 Questions 8, 9, 12 (pp. 45, 47) |
|  |  | Express the relationship between two numbers, including decimal numbers, using $<$, $>$, or $=$. | Number Unit 1: Number Relationships and Place Value <br> 3: Comparing and Rounding Numbers <br> 4: Consolidation <br> Number Unit 3: Fractions, Decimals, and Ratios <br> 13: Comparing and Ordering Decimals <br> 15: Consolidation | Unit 2 Question 9 (p.10) |
|  |  | Round numbers, including decimal numbers, to various places according to context. | Number Unit 1: Number Relationships and Place Value <br> 3: Comparing and Rounding Numbers <br> 4: Consolidation <br> Number Unit 3: Fractions, Decimals, and Ratios <br> 13: Comparing and Ordering Decimals <br> 15: Consolidation | Unit 2 Questions 12, 13, 14, 15 (pp. 12-13) <br> Unit 7 Questions 5, 7, 12 (pp. 44, 47) |


| Guiding Question: In what ways can the processes of addition and subtraction be articulated? <br> Learning Outcome: Students add and subtract within 1000 000, including decimal numbers to thousandths, using standard algorithms. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Standard algorithms are efficient procedures for addition and subtraction. | Addition and subtraction of numbers with many digits is facilitated by standard algorithms. | Add and subtract numbers, including decimal numbers, using standard algorithms. | Number Unit 2: Fluency with Addition and Subtraction <br> 5: Exploring Addition Strategies <br> 6: Exploring Subtraction Strategies <br> 7: Consolidation <br> Number Unit 5: Operations with Fractions and Decimals <br> 22: Adding and Subtracting Decimals to Thousandths <br> 23: Adding and Subtracting Fractions with Like Denominators <br> 24: Consolidation | Unit 3 Questions 4, 5, 6, 7, 8 (pp. 16-19) <br> Unit 9 Questions 4, 5, 12 (pp. 53-54, 57) |
|  |  | Assess the reasonableness of a sum or difference using estimation. | Number Unit 2: Fluency with Addition and Subtraction <br> 5: Exploring Addition Strategies <br> 6: Exploring Subtraction Strategies <br> 7: Consolidation <br> Number Unit 5: Operations with <br> Fractions and Decimals <br> 21: Estimating Sums and Differences with Decimals <br> 22: Adding and Subtracting Decimals to Thousandths <br> 24: Consolidation | Unit 2 Question 13 (p. 12) <br> Unit 3 Questions 1, 2, 3, 5 (pp. 14-15, 17) <br> Unit 9 Questions 1, 2, 3, 4, 5, 12 (pp. 52-54, 57) <br> Unit 12 Question 4 (p. 73) |


|  |  | Solve problems using <br> addition and <br> subtraction, including <br> problems involving <br> money. | Number Unit 5: Operations with <br> Fractions and Decimals <br> 21: Estimating Sums and Differences <br> with Decimals <br> 22: Adding and Subtracting Decimals <br> to Thousandths <br> 23: Adding and Subtracting Fractions <br> with Like Denominators <br> 24: Consolidation | Unit 3 Questions 5, 6, 7 <br> (pp. 16-18) |
| :--- | :--- | :--- | :--- | :--- |
| (pp. 72-73) |  |  |  |  |


| Guiding Question: In what ways can divisibility characterize natural numbers? <br> Learning Outcome: Students determine divisibility of natural numbers. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice <br> Workbook 5 |
| A divisibility test can <br> be used to <br> determine factors of <br> a natural number. | A number is divisible <br> by another number <br> if it can be divided <br> with a remainder of <br> 0. | Investigate divisibility <br> by natural numbers to <br> 10, including 0. | Number Unit 4: Multiplying and <br> Dividing Larger Numbers <br> 16: Investigating Divisibility Tests <br> 20: Consolidation | Unit 13 Questions 6, 7, 9, <br> Division by zero is (pp. 82-83, 85) <br> not possible. |
|  |  | Generalize divisibility <br> tests for 2, 3, and 5. | Number Unit 4: Multiplying and <br> Dividing Larger Numbers <br> 16: Investigating Divisibility Tests <br> 20: Consolidation | N/A |


| Guiding Question: In what ways can the processes of multiplication and division be articulated? Learning Outcome: Students multiply and divide natural numbers within 100000 , including with standard algorithms. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Multiplication and division of numbers with many digits is facilitated by standard algorithms. | Standard algorithms are efficient procedures for multiplication and division. | Explain the standard algorithms for multiplication and division of natural numbers. | Number Unit 4: Multiplying and Dividing Larger Numbers <br> 18: Multiplying Larger Numbers <br> 19: Dividing Larger Numbers <br> 20: Consolidation | N/A |
|  |  | Multiply up to 3-digit by 2-digit natural numbers using standard algorithms. | Number Unit 4: Multiplying and Dividing Larger Numbers <br> 18: Multiplying Larger Numbers <br> 20: Consolidation | Unit 13 Questions 5, 8, 9, 13 (pp. 81-83, 85) |
|  |  | Divide 3-digit by 1digit natural numbers using standard algorithms. | Number Unit 4: Multiplying and Dividing Larger Numbers 19: Dividing Larger Numbers 20: Consolidation | Unit 13 Questions 6, 7, 9, 14 (pp. 82-83, 85) |
|  |  | Express a quotient with or without a remainder according to context. | Number Unit 4: Multiplying and Dividing Larger Numbers <br> 17: Using Estimation for Multiplication and Division <br> 19: Dividing Larger Numbers <br> 20: Consolidation | Unit 13 Question 9 (p. 83) |
|  |  | Assess the reasonableness of a product or quotient using estimation. | Number Unit 4: Multiplying and Dividing Larger Numbers <br> 17: Using Estimation for Multiplication and Division <br> 18: Multiplying Larger Numbers <br> 19: Dividing Larger Numbers <br> 20: Consolidation | Unit 2 Question 5 (p. 9) <br> Unit 13 Question 3 (p. 81) |


|  |  | Solve problems using <br> multiplication and <br> division of natural <br> numbers. | Number Unit 4: Multiplying and <br> Dividing Larger Numbers <br> 17: Using Estimation for Multiplication <br> and Division <br> nult Multiplying Larger Numbers | Unit 13 Questions 4, 8, 9 <br> (pp. 81-83) |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 19: Dividing Larger Numbers <br> 20: Consolidation |  |


| Guiding Question: In what ways can fractions communicate numbers greater than one? Learning Outcome: Students interpret improper fractions. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| A fraction can represent quantities greater than one. <br> An improper fraction has a | Fractions allow counting and measuring between whole quantities. <br> Improper fractions and mixed numbers that represent the | Relate fractions, improper fractions, and mixed numbers to their positions on the number line. | Number Unit 3: Fractions, Decimals, and Ratios <br> 9: Exploring Different Representations of Fractions <br> 10: Exploring Improper Fractions and Mixed Numbers <br> 15: Consolidation | Unit 7 Questions 8, 9 (p. 45) |
| greater than its denominator. <br> Natural numbers can be expressed as improper fractions with a denominator | same number are associated with the same point on the number line. | Count beyond 1 using fractions with the same denominator. | Number Unit 3: Fractions, Decimals, and Ratios <br> 8: Counting by Unit Fractions <br> 9: Exploring Different Representations of Fractions <br> 10: Exploring Improper Fractions and Mixed Numbers <br> 15: Consolidation | N/A |


| A mixed number of the form $A \frac{b}{c}$, composed of a number of wholes, $A$, and a fractional part, $\frac{b}{c}$, can represent an improper fraction. |  | Model fractions, including improper fractions and mixed numbers, using quantities, lengths, and areas. | Number Unit 3: Fractions, Decimals, and Ratios <br> 9: Exploring Different Representations of Fractions <br> 10: Exploring Improper Fractions and Mixed Numbers <br> 15: Consolidation | Unit 7 Questions 1, 2, 3, 8, 9 (pp. 42-43, 45) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Express improper fractions and mixed numbers symbolically. | Number Unit 3: Fractions, Decimals, and Ratios <br> 9: Exploring Different Representations of Fractions <br> 10: Exploring Improper Fractions and Mixed Numbers <br> 15: Consolidation | Unit 7 Questions 4, 8, 9, 12 (pp. 43, 45, 47) |
|  |  | Express an improper fraction as a mixed number and vice versa. | Number Unit 3: Fractions, Decimals, and Ratios <br> 10: Exploring Improper Fractions and Mixed Numbers <br> 15: Consolidation | Unit 7 Questions 4, 8, 9, 12 (pp. 43, 45, 47) |
|  |  | Compare fractions, including improper fractions and mixed numbers, to benchmarks of $0, \frac{1}{2}$, and 1. | Number Unit 3: Fractions, Decimals, and Ratios <br> 11: Comparing and Ordering Fractions <br> 15: Consolidation | Unit 7 Question 9 (p. 45) |


| Guiding Question: How can the composition of fractions facilitate operating with fractions? Learning Outcome: Students add and subtract fractions with common denominators. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Fractions with common denominators can be composed or decomposed to model the change in a quantity of unit fractions. | Fractions with common denominators are multiples of the same unit fraction. <br> Properties for addition and subtraction of natural numbers apply to fractions. | Investigate the composition and decomposition of a quantity within 1 using unit fractions. | Number Unit 3: Fractions, Decimals, and Ratios <br> 8: Counting by Unit Fractions <br> Number Unit 5: Operations with Fractions and Decimals <br> 23: Adding and Subtracting Fractions with Like Denominators 24: Consolidation | Unit 9 Question 6 (p. 54) |
| Addition and subtraction of fractions with common denominators does not change the unit fraction from which they are composed. |  | Express the composition or decomposition of fractions with common denominators as a sum or difference. | Number Unit 3: Fractions, Decimals, and Ratios <br> 8: Counting by Unit Fractions <br> Number Unit 5: Operations with Fractions and Decimals <br> 23: Adding and Subtracting Fractions with Like Denominators 24: Consolidation | Unit 9 Question 7 (p. 55) |
| Fractions greater than one can be added or subtracted as mixed numbers |  | Compare strategies for adding or subtracting improper fractions to strategies for adding or subtracting mixed numbers. | Number Unit 5: Operations with Fractions and Decimals <br> 23: Adding and Subtracting Fractions with Like Denominators 24: Consolidation | N/A |
| or improper fractions. |  | Add and subtract fractions with common denominators within 100, including improper fractions and mixed numbers. | Number Unit 5: Operations with Fractions and Decimals <br> 23: Adding and Subtracting Fractions with Like Denominators 24: Consolidation | Unit 9 Questions 6, 7, 8, 12 (pp. 54-55, 57) |


|  |  | Solve problems <br> requiring addition and <br> subtraction of fractions <br> with common <br> denominators, <br> including improper <br> fractions and mixed <br> numbers. | Number Unit 5: Operations with <br> Fractions and Decimals <br> 23: Adding and Subtracting <br> Fractions with Like Denominators <br> 24: Consolidation | Unit 9uestions 6, 8 <br> (pp. 54-55) |
| :--- | :--- | :--- | :--- | :--- |

Guiding Question: How can ratios provide new ways to relate numbers?
Learning Outcome: Students employ ratios to represent relationships between quantities.

| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| :---: | :---: | :---: | :---: | :---: |
| A ratio can express part-part or partwhole relationships between two countable or measurable quantities. | A ratio is a comparison of two quantities in a specific situation. <br> Fractions, decimals, ratios, and percentages can represent the same partwhole relationship. | Express part-part ratios and part-whole ratios of the same whole to describe various situations. | Number Unit 3: Fractions, Decimals, and Ratios <br> 14: Exploring Ratios <br> 15: Consolidation | Unit 13 Questions 11, 12 (p. 84) |
| measurable quantities. <br> A ratio can be expressed with a fraction or with a colon. |  | Express, symbolically, the same part-whole relationship as a ratio, fraction, decimal, and percentage. | Number Unit 3: Fractions, Decimals, and Ratios <br> 14: Exploring Ratios <br> 15: Consolidation | Unit 7 Question 10 (p. 46) |
| A percentage represents a partwhole ratio that compares a quantity to 100. |  |  |  |  |

## mathology

## Mathology Grade 5 Correlation (Algebra) - Alberta Curriculum

## Organizing Idea:

Algebra: Equations express relationships between quantities.

| Guiding Question: How can expressions enhance communication of number? Learning Outcome: Students interpret numerical and algebraic expressions. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Numerical expressions with multiple operations may include parentheses to group numbers and operations. <br> The conventional order of operations includes performing operations in parentheses before other operations. | Numerical expressions represent a quantity of known value. <br> Parentheses change the order of operations in a numerical expression. | Evaluate numerical expressions involving addition or subtraction in parentheses according to the order of operations. | Patterning Unit 2: Variables and Equations 4: The Order of Operations 10: Consolidation | Unit 16 Question 7 (p. 101) |
| Expressions that include variables are called algebraic expressions. | Algebraic expressions use variables to represent quantities of unknown value. | Relate repeated addition of a variable to the product of a number and a variable. | Patterning Unit 2: Variables and Equations <br> 5: Using Variables <br> 10: Consolidation | Unit 16 Questions 1, 4 (pp. 99-100) |
| as a specific unknown value and is represented symbolically with a letter. | Algebraic expressions may be composed of one algebraic term or the sum of algebraic and constant terms. | Express the product of a number and a variable using a coefficient. | Patterning Unit 2: Variables and Equations <br> 5: Using Variables <br> 10: Consolidation | $\begin{aligned} & \text { Unit } 16 \text { Questions 1, 2, 6, } \\ & 7,9,10 \text { (pp. 99, 101-102) } \end{aligned}$ |



| The process of applying inverse operations can be used to solve an equation. <br> The value of the variable obtained by solving an equation is the solution. | Equality is preserved by applying inverse operations to algebraic expressions on each side of an equation. <br> The expressions on each side of an equation will be equal when evaluated using the correct solution. | Write equations involving one or two operations to represent a situation. | Patterning Unit 2: Variables and Equations <br> 5: Using Variables <br> 6: Solving Addition and Subtraction Equations <br> 7: Solving Multiplication and Division Equations <br> 8: Using Equations to Solve Problems <br> 9: Using Equations with Two Operations to Solve Problems 10: Consolidation | Unit 16 Questions 2, 5, 6, 7, 8, 9, 10 (pp. 99-102) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Investigate order of operations when performing inverse operations on both sides of an equation. | Patterning Unit 2: Variables and Equations <br> 6: Solving Addition and Subtraction Equations <br> 7: Solving Multiplication and Division Equations <br> 8: Using Equations to Solve Problems <br> 9: Using Equations with Two Operations to Solve Problems 10: Consolidation | Unit 16 Questions 3, 7, 8, 9, 10, 13 (pp. 100-102, 104) |
|  |  | Apply inverse operations to solve an equation, limited to equations with one or two operations. | Patterning Unit 2: Variables and Equations <br> 6: Solving Addition and Subtraction Equations <br> 7: Solving Multiplication and Division Equations <br> 8: Using Equations to Solve Problems <br> 9: Using Equations with Two Operations to Solve Problems 10: Consolidation | Unit 16 Questions 3, 7, 8, 9, 10, 13 (pp. 100-102, 104) |


|  |  | Verify the solution to an equation by evaluating expressions on each side of the equation. | Patterning Unit 2: Variables and Equations <br> 6: Solving Addition and Subtraction Equations <br> 7: Solving Multiplication and Division Equations <br> 8: Using Equations to Solve Problems <br> 9: Using Equations with Two Operations to Solve Problems 10: Consolidation | Unit 16 Questions 3, 8, 10, 13 (pp. 100-102, 104) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Solve problems using equations, limited to equations with one or two operations. | Patterning Unit 2: Variables and Equations <br> 4: The Order of Operations <br> 6: Solving Addition and Subtraction Equations <br> 7: Solving Multiplication and Division Equations <br> 8: Using Equations to Solve Problems <br> 9: Using Equations with Two Operations to Solve Problems 10: Consolidation | Unit 16 Questions 6, 8, 9, 10 (pp. 101-102) |

## mathology

## Mathology Grade 5 Correlation (Geometry) - Alberta Curriculum

## Organizing Idea:

Geometry: Shapes are defined and related by geometric attributes

| Guiding Question: In what ways might symmetry characterize shape? <br> Learning Outcome: Students investigate symmetry as a geometric property. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| A 2-D shape has reflection symmetry if there is a straight line over which the shape reflects and the two halves exactly match. <br> A 3-D shape has reflection symmetry if there is a plane over which the shape reflects and the two halves exactly match. | Symmetry is a property of shapes. <br> Symmetry can be created and can occur in nature. | Recognize symmetry in nature. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 1: Recognizing Symmetry in First Nations Designs <br> 5: Coding and Rotation Symmetry <br> 6: Consolidation | N/A |
|  |  | Recognize symmetry in First Nations, Métis, and Inuit designs. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 1: Recognizing Symmetry in First Nations Designs | N/A |
| rotation of less than $360^{\circ}$ around its centre point. <br> Order of rotation symmetry describes the number of times a shape coincides with itself within |  | Investigate symmetry in familiar 2-D and 3-D shapes using hands-on materials or digital applications. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 2: Understanding Line Symmetry <br> 5: Coding and Rotation Symmetry <br> 6: Consolidation | Unit 4 Questions 1, 2, 3, 4, 10 (pp. 22-24, 27) |


| a rotation of $360^{\circ}$ around its centre point. <br> Central symmetry is the rotational symmetry by $180^{\circ}$. |  | Show the line of symmetry of a 2-D shape. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 2: Understanding Line Symmetry <br> 6: Consolidation | Unit 4 Questions 3, 10 (pp. 23, 27) |
| :---: | :---: | :---: | :---: | :---: |
| The straight line that connects a point with its image in the central symmetry passes through the centre of rotation. <br> Symmetry can be found in First Nations, Métis, and Inuit designs, such as: <br> - basket weaving <br> - Wampum belts <br> - quilts <br> - First Nations beadwork, Inuit beadwork, or Métis floral beadwork <br> - architecture such as tipis or longhouses |  | Describe the order of rotation symmetry of a 2-D shape. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 3. Investigating Reflection and Rotation Symmetry <br> 5: Coding and Rotation Symmetry <br> 6: Consolidation | Unit 4 Questions 1, 2, 10 (pp. 22-23, 27) |
| In a regular polygon, the number of sides equals the number of reflection symmetries and the number of rotation symmetries. <br> A circle has infinitely many reflection and rotation symmetries. | Symmetry is related to other geometric properties. | Compare the number of reflection and rotation symmetries of a 2-D shape to the number of equal sides and angles. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 3. Investigating Reflection and Rotation Symmetry <br> 5: Coding and Rotation Symmetry <br> 6: Consolidation | N/A |
|  |  | Classify 2-D shapes according to the number of reflection or rotation symmetries. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 3. Investigating Reflection and Rotation Symmetry <br> 5: Coding and Rotation Symmetry <br> 6: Consolidation | Unit 4 Questions 1, 10 (pp. 22, 27) |

## taman <br> mathology

## Mathology Grade 5 Correlation (Coordinate Geometry) - Alberta Curriculum

## Organizing Idea:

Coordinate Geometry: Location and movement of objects in space can be communicated using a coordinate grid.

| Guiding Question: How can location enhance the ways in which space is defined? Learning Outcome: Students relate location to position on a grid. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Coordinate grids use coordinates to indicate the location of the point where the vertical and horizontal grid lines intersect. <br> Coordinates are ordered pairs of numbers in which the first number indicates the distance from the vertical axis and the second number indicates the distance from the horizontal axis. <br> Positional language includes <br> - left <br> - right <br> - up <br> - down | Location can describe the position of shapes in space. <br> Location can be described precisely using a coordinate grid. | Locate a point on a coordinate grid given the coordinates of the point. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 4: Plotting and Reading Coordinates <br> 6: Consolidation | Unit 5 Questions 2, $11 \text { (pp. 29, 34) }$ |
|  |  | Describe the location of a point on a coordinate grid using coordinates. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 4: Plotting and Reading Coordinates <br> 6: Consolidation | Unit 5 Questions 1, 3, 11 (pp. 28-29, 34) |
|  |  | Describe the location of a point on a coordinate grid in relation to the location of another point using positional language. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 4: Plotting and Reading Coordinates <br> 6: Consolidation | N/A |
|  |  | Model a polygon on a coordinate grid using coordinates to indicate the vertices. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 4: Plotting and Reading Coordinates <br> 6: Consolidation | Unit 5 Questions 3, $11 \text { (pp. 29, 34) }$ |


|  |  | Describe the location of <br> the vertices of a polygon <br> on a coordinate grid using <br> coordinates. | Geometry Unit 1: 2-D Shapes and <br> Coordinate Grids <br> 4: Plotting and Reading Coordinates <br> 6: Consolidation | Unit 5 Questions 3, <br> 11 (pp. 29, 34) |
| :--- | :--- | :--- | :--- | :--- |

## mathology

## Mathology Grade 5 Correlation (Measurement) - Alberta Curriculum

## Organizing Idea:

Measurement: Attributes such as length, area, volume, and angle are quantified by measurement.

| Guiding Question: In what ways can area be communicated? <br> Learning Outcome: Students estimate and calculate area using standard units. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Area is expressed in the following standard units, derived from standard units of length: | Area can be expressed in various units according to context and desired precision. | Relate a centimetre to a square centimetre. | Measurement Unit 1: Area and Perimeter <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | Unit 14 Questions 5, 7, 8, 11, 12 (pp. 87, 89, 91-92) |
| - square centimetres <br> - square metres <br> - square kilometres <br> A square centimetre | area can have different perimeters. | Relate a metre to a square metre. | Measurement Unit 1: Area and Perimeter <br> 1: Estimating and Measuring Area in Square Metres <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | Unit 14 Questions 5, 7, 9 (pp. 87, 89-90) |
| equivalent to the area of a square measuring 1 centimetre by 1 centimetre. |  | Relate a square centimetre to a square metre. | Measurement Unit 1: Area and Perimeter <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | Unit 14 Questions 5, 7 (pp. 88-89) |


| A square metre $\left(\mathrm{m}^{2}\right)$ is an area equivalent to the area of a square measuring 1 metre by 1 metre. <br> A square kilometre $\left(\mathrm{km}^{2}\right)$ is an area equivalent to the area of a square measuring 1 kilometre by 1 kilometre. |  | Express the relationship between square centimetres, square metres, and square kilometres. | Measurement Unit 1: Area and Perimeter <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | N/A |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Justify the choice of square centimetres, square metres, or square kilometres as appropriate units to express various areas. | Measurement Unit 1: Area and Perimeter <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | Unit 14 Question 7 (p. 89) |
| Among all rectangles with the same area, the square has the least perimeter. |  | Estimate an area by comparing to a benchmark of a square centimetre or square metre. | Measurement Unit 1: Area and Perimeter <br> 1: Estimating and Measuring Area in Square Metres <br> 2: Exploring the Relationships among Metric Units of Area <br> 4: Consolidation | N/A |
|  |  | Express the area of a rectangle using standard units given the lengths of its sides. | Measurement Unit 1: Area and Perimeter <br> 1: Estimating and Measuring Area in Square Metres <br> 4: Consolidation | Unit 14 Question 8 (p. 89) |
|  |  | Compare the perimeters of various rectangles with the same area. | Measurement Unit 1: Area and Perimeter <br> 3: Relating Perimeter and Area of Rectangles <br> 4: Consolidation | Unit 14 Question 8 (p. 89) |


|  |  | Describe the rectangle <br> with the least <br> perimeter for a given <br> area. | Measurement Unit 1: Area and <br> Perimeter <br> 3: Relating Perimeter and Area of <br> Rectangles <br> 4: Consolidation | N/A |
| :---: | :--- | :--- | :--- | :--- |
|  | Solve problems <br> involving perimeter <br> and area of <br> rectangles. | Measurement Unit 1: Area and <br> Perimeter <br> $3:$ Relating Perimeter and Area of <br> Rectangles <br> $4:$ Consolidation | Unit 14 Questions 5, 6, 8, <br> 9,12 (pp. 87-90, 92) |  |

## knamen <br> mathology

## Mathology Grade 5 Correlation (Patterns) - Alberta Curriculum

## Organizing Idea:

Patterns: Awareness of patterns supports problem solving in various situations.
Guiding Question: How might representation of a sequence provide insight into change? Learning Outcome: Students relate terms to position within an arithmetic sequence.

| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| :---: | :---: | :---: | :---: | :---: |
| A table of values representing an arithmetic sequence lists the position in the first column or row and the corresponding term in the second column or row. | Each term of an arithmetic sequence corresponds to a natural number indicating position in the sequence. | Represent one-to-one correspondence between positions and terms of an arithmetic sequence in a table of values and on a coordinate grid. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Questions 2, 7, 8, 10 (pp. 2, 5-7) |
| column or row. <br> Points representing an arithmetic sequence on a coordinate grid fit on a straight line. |  | Describe the graph of an arithmetic sequence as a straight line. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Questions 2, 7, 10 (pp. 3, 5, 7) |
| An algebraic expression can describe the relationship between the positions and terms of an arithmetic sequence. |  | Describe a rule, limited to one operation, that expresses correspondence between positions and terms of an arithmetic sequence. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Questions 1, 2, 4, 5, 6, 8, 10 (pp. 2-7) |


|  |  | Write an algebraic expression, limited to one operation, that represents correspondence between positions and terms of an arithmetic sequence. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Questions 3, 8, 9, 10 (pp. 4, 6-7) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Determine the missing term in an arithmetic sequence that corresponds to a given position. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Question 6 (p. 5) |
|  |  | Solve problems involving an arithmetic sequence. | Patterning Unit 1: Patterns and Relations <br> 1: Investigating Visual Sequences <br> 2: Investigating Numeric <br> Sequences <br> 3: Consolidation | Unit 1 Questions 6, 7, 8 (pp. 5-6) |

## nemann <br> mathology

## Mathology Grade 5 Correlation (Statistics) - Alberta Curriculum

## Organizing Idea:

Statistics: The science of collecting, analyzing, visualizing, and interpreting data can inform understanding and decision making.

| Guiding Question: How might frequency bring meaning to data? Learning Outcome: Students analyze frequency in categorical data. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| Frequency can be compared across categories to answer statistical questions. <br> The mode is the category with the highest frequency. | Frequency is a count of categorized data, but it is not the data value itself. | Examine categorized data in tables and graphs. | Data Unit 1: Data Management <br> 2: Investigating Frequency of Data <br> 4: Interpreting Data <br> 5: Consolidation | Unit 10 Questions 1, 2, 5 (pp. 60-62) |
|  |  | Determine frequency for each category of a set of data by counting individual data points. | Data Unit 1: Data Management <br> 2: Investigating Frequency of Data <br> 4: Interpreting Data <br> 5: Consolidation | Unit 10 Questions 1, 2 (pp. 60-61) |
|  |  | Identify the mode in various representations of data. | Data Unit 1: Data Management <br> 2: Investigating Frequency of Data <br> 5: Consolidation | Unit 10 Question 6 (p. 63) |
|  |  | Recognize data sets with no mode, one mode, or multiple modes. | Data Unit 1: Data Management <br> 2: Investigating Frequency of Data <br> 5: Consolidation | Unit 10 Question 6 (p. 63) |


|  |  | Justify possible answers to a statistical question using mode. | Data Unit 1: Data Management <br> 2: Investigating Frequency of Data <br> 4: Interpreting Data <br> 5: Consolidation | Unit 10 Questions 6, 8 (pp. 63, 65) |
| :---: | :---: | :---: | :---: | :---: |
| Data can be collected by asking closed-list and open-ended questions. <br> Closed-list questions provide a list of possible responses to choose from. | Frequency can be a count of categorized responses to a question. <br> Frequency can be used to summarize data. <br> Frequency can be represented in various forms. | Discuss potential categories for openended questions and closed-list questions in relation to the same statistical question. | Data Unit 1: Data Management <br> 1: Formulating Questions to Collect Data <br> 5: Consolidation | N/A |
|  |  | Formulate closed-list questions to collect data to answer a statistical question. | Data Unit 1: Data Management <br> 1: Formulating Questions to Collect Data <br> 5: Consolidation | N/A |
| Open-ended questions allow any response. <br> Responses can be categorized in various ways. |  | Categorize data that was collected using closed-list questions. | Data Unit 1: Data Management <br> 1: Formulating Questions to Collect Data <br> 5: Consolidation | N/A |
| Representations of frequency can include <br> - bar graphs <br> - dot plots <br> - stem-and-leaf plots |  | Organize counts of categorized data in a frequency table. | Data Unit 1: Data Management <br> 1: Formulating Questions to Collect Data <br> 2: Investigating Frequency of Data <br> 5: Consolidation | Unit 10 Questions 1, 2 (pp. 60-61) |
|  |  | Create various representations of data, including with technology, to interpret frequency. | Data Unit 1: Data Management <br> 3: Representing Data <br> 5: Consolidation | Unit 10 Questions 4, 5 (pp. 62-63) |

## naman <br> mathology

## Mathology Grade 5 Correlation (Financial Literacy) - Alberta Curriculum

## Organizing Idea:

Financial Literacy: Informed financial decision making contributes to the well-being of individuals, groups and communities.

| Guiding Question: In what ways can financial goals be supported?Learning Outcome: Students demonstrate how planning can support |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| A budget is a plan that supports an individual when making decisions on how to earn, spend, save, invest, and donate over a period. | Budgeting is important to responsible financial decision making and can support achieving short-term and longterm financial goals. | Develop a simple budget for an activity or event. | Number Unit 6: Financial Literacy <br> 25: Designing a Simple Budget <br> 28: Consolidation | Unit 12 Questions 9, 10, 11 (p. 76) |
|  |  | Examine the components of a budget. | Number Unit 6: Financial Literacy <br> 25: Designing a Simple Budget <br> 28: Consolidation | Unit 12 Question 11 (p. 76) |
| money expected to be earned (income), and money planned on spending (expenses). |  | Create a savings plan for short-term and long-term goals. | Number Unit 6: Financial Literacy 26: Planning for Financial Goals 28: Consolidation | Unit 12 Question 10 (p. 76) |
| A budget can be divided into needs and wants. |  |  |  |  |


| Budgets can be used for a variety of situations, such as <br> - personal <br> - household <br> - business <br> - event or activity |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Budgets may need to be adjusted due to unforeseen circumstances. |  |  |  |  |
| Short-term financial goals can be immediate and can support attainment of longterm goals. |  |  |  |  |
| Long-term financial goals can take several years to achieve, involve more money, and require commitment. |  |  |  |  |
| A consumer is an individual who purchases goods and services. <br> Factors that can influence consumer choice include <br> - marketing <br> - advertising <br> - media <br> - availability <br> - trends <br> - price | When purchasing goods and services, individuals have the ability to make choices. | Examine factors that influence consumer choice. | Number Unit 6: Financial Literacy <br> 27: Factors Influencing Consumer Choices <br> 28: Consolidation | N/A |

## mathology

## Mathology Grade 5 Correlation (Computer Science) - Alberta Curriculum

## Organizing Idea:

Computer Science: Problem solving and scientific inquiry are developed through the knowledgeable application of creativity, design, and computational thinking.

| Guiding Question: In what ways can design be used to help achieve desired outcomes or purposes? <br> Learning Outcome: Students apply design processes when creating artifacts that can be used by a human or machine to address a need. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Knowledge | Understanding | Skills \& Procedures | Mathology Grade 5 Activities | Mathology Practice Workbook 5 |
| A computational artifact is anything created by a human using a computer, such as <br> - computer programs and code <br> - images <br> - audio <br> - video <br> - presentations <br> - web pages <br> Design can be used to create algorithms and translate them into code. | Design can be used by humans or machines to meet needs. | Engage in the design process to create computational artifacts. <br> Relate a block of code to an outcome or a behaviour. <br> Explain what will happen when single or multiple blocks of code are executed. <br> Translate a given algorithm to code using a visual block-based language. <br> Design an algorithm that includes a loop and translate it into code. | Geometry Unit 1: 2-D Shapes and Coordinate Grids <br> 5: Coding and Rotation Symmetry | Unit 6 Questions 1, 2, 3, 5, 6, 7 (pp. 35-39) |


| Code is any language <br> that can be understood <br> by and run on a <br> computer. |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| There are many ways to |  |  |  |
| code, including using |  |  |  |
| visual block-based |  |  |  |
| languages. |  |  |  |
| Visual block-based |  |  |  |
| languages are a form of |  |  |  |
| code in which prepared |  |  |  |
| chunks of instructions |  |  |  |
| are in drag-and-drop |  |  |  |
| blocks that fit together |  |  |  |
| like puzzle pieces to |  |  |  |
| design a program. |  |  |  |
| A computer cannot |  |  |  |
| think for itself and must |  |  |  |
| rely on code for all that |  |  |  |
| it does. |  |  |  |
| A loop is a repetition of |  |  |  |
| instructions used in an |  |  |  |
| algorithm. |  |  |  |

