

Algebra and Number	General Outcome: Develop algebraic reasoning and number	er sense.
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
1. Demonstrate an understanding of the absolute value of real numbers.	1.1 Determine the distance of two real numbers of the form $\pm a, a \in R$, from 0 on a number line, and relate	2.1
[R, V]	this to the absolute value of $a(a)$.	
	1.2 Determine the absolute value of a positive or negative real number.	2.1
	1.3 Explain, using examples, how distance between two points on a number line can be expressed in terms of absolute value.	2.1
	1.4 Determine the absolute value of a numerical expression.	2.1
	1.5 Compare and order the absolute values of real numbers in a given set.	2.1
2. Solve problems that involve operations on radicals and radical expressions with	2.1 Compare and order radical expressions with numerical radicands in a given set.	2.2
numerical and variable radicands. [CN, ME, PS, R, T]	2.2 Express an entire radical with a numerical radicand as a mixed radical.	2.2, 2.3, 2.4
	2.3 Express a mixed radical with a numerical radicand as an entire radical.	2.2, 2.3
	2.4 Perform one or more operations to simplify radical expressions with numerical or variable radicands.	2.3, 2.4
	2.5 Rationalize the denominator of a rational expression with monomial or binomial denominators.	2.4

Correlation of WNCP Curriculum to

Pearson Pre-calculus 11

Algebra and Number	General Outcome: Develop algebraic reasoning and number sense.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
	2.6 Describe the relationship between rationalizing a binomial denominator of a rational expression and the product of the factors of a difference of squares expression.	2.4
	2.7 Explain, using examples, that $(-x)^2 = x^2$, $\sqrt{x^2} = x $ and $\sqrt{x^2} \neq \pm x$; e.g., $\sqrt{9} \neq \pm 3$.	2.1, 2.2
	2.8 Identify the values of the variable for which a given radical expression is defined.	2.2, 2.3, 2.4
	2.9 Solve a problem that involves radical expressions.	2.2, 2.3
3. Solve problems that involve radical equations (limited to square roots).	3.1 Determine any restrictions on values for the variable in a radical equation.	2.5
[C, PS, R]	3.2 Determine the roots of a radical equation algebraically, and explain the process used to solve the equation.	2.5, 3.2, 3.4
	3.3 Verify, by substitution, that the values determined in solving a radical equation algebraically are roots of the equation.	2.5, 3.2
	3.4 Explain why some roots determined in solving a radical equation algebraically are extraneous.	2.5, 3.2
	3.5 Solve problems by modelling a situation using a radical equation.	2.5

Algebra and Number	General Outcome: Develop algebraic reasoning and number sense.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
4. Determine equivalent forms of rational expressions (limited to numerators and denominators that are monomials,	4.1 Compare the strategies for writing equivalent forms of rational expressions to the strategies for writing equivalent forms of rational numbers.	7.1
binomials or trinomials). [C, ME, R]	4.2 Explain why a given value is non-permissible for a given rational expression.	7.1
	4.3 Determine the non-permissible values for a rational expression.	7.1
	4.4 Determine a rational expression that is equivalent to a given rational expression by multiplying the numerator and denominator by the same factor (limited to a monomial or a binomial), and state the non-permissible values of the equivalent rational expression.	7.1
	4.5 Simplify a rational expression.	7.1
	4.6 Explain why the non-permissible values of a given rational expression and its simplified form are the same.	7.1
	4.7 Identify and correct errors in a simplification of a rational expression, and explain the reasoning.	7.1

Algebra and Number	General Outcome: Develop algebraic reasoning and number sense.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
5. Perform operations on rational expressions	5.1 Compare the strategies for performing a given	7.2, 7.3
(limited to numerators and denominators	operation on rational expressions to the strategies for	
that are monomials, binomials or	performing the same operation on rational numbers.	
trinomials).	5.2 Determine the non-permissible values when	7.2, 7.3, 7.4
[CN, ME, R]	performing operations on rational expressions.	
	5.3 Determine, in simplified form, the sum or difference	7.3, 7.4
	of rational expressions with the same denominator.	
	5.4 Determine, in simplified form, the sum or difference	7.3, 7.4
	of rational expressions in which the denominators	
	are not the same and which may or may not contain	
	common factors.	
	5.5 Determine, in simplified form, the product or	7.2
	quotient of rational expressions.	
	5.6 Simplify an expression that involves two or more	7.2, 7.3, 7.4
	operations on rational expressions.	
6. Solve problems that involve rational	6.1 Determine the non-permissible values for the	7.5, 7.6
equations (limited to numerators and	variable in a rational equation.	
denominators that are monomials,	6.2 Determine the solution to a rational equation	7.5, 7.6
binomials or trinomials).	algebraically, and explain the process used to solve	
[C, PS, R]	the equation.	
	6.3 Explain why a value obtained in solving a rational	7.5, 7.6
	equation may not be a solution of the equation.	
	6.4 Solve problems by modelling a situation using a	7.6
	rational equation.	

Trigonometry	General Outcome: Develop trigonometric reasoning.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
1. Demonstrate an understanding of angles in standard position [0° to 360°].	1.1 Sketch an angle in standard position, given the measure of the angle.	6.2
[R, V]	1.2 Determine the reference angle for an angle in standard position.	6.2
	1.3 Explain, using examples, how to determine the angles from 0° to 360° that have the same reference angle as a given angle.	6.2
	1.4 Illustrate, using examples, that any angle from 90° to 360° is the reflection in the <i>x</i> -axis and/or the <i>y</i> -axis of its reference angle.	6.2
	1.5 Determine the quadrant in which a given angle in standard position terminates.	6.2
	1.6 Draw an angle in standard position given any point $P(x, y)$ on the terminal arm of the angle.	6.2
	1.7 Illustrate, using examples, that the points $P(x, y)$, P(-x, y), $P(-x, -y)$ and $P(x, -y)$ are points on the terminal sides of angles in standard position that have the same reference angle.	6.2

Trigonometry	General Outcome: Develop trigonometric reasoning.	1
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
2. Solve problems, using the three primary trigonometric ratios for angles from 0° to 360° in standard position.	2.1 Determine, using the Pythagorean theorem or the distance formula, the distance from the origin to a point $P(x, y)$ on the terminal arm of an angle.	6.1
[C, ME, PS, R, T, V]	2.2 Determine the value of $\sin \theta$, $\cos \theta$ or $\tan \theta$, given any point P(x, y) on the terminal arm of angle θ .	6.1
	2.3 Determine, without the use of technology, the value of $\sin \theta$, $\cos \theta$ or $\tan \theta$, given any point P(<i>x</i> , <i>y</i>) on the terminal arm of angle θ , where $\theta = 0^{\circ}$, 90° , 180° , 270° or 360° .	6.2
	2.4 Determine the sign of a given trigonometric ratio for a given angle, without the use of technology, and explain.	6.2
	2.5 Solve, for all values of θ , an equation of the form $\sin \theta = a$ or $\cos \theta = a$, where $-1 \le a \le 1$, and an equation of the form $\tan \theta = a$, where <i>a</i> is a real number.	6.2
	2.6 Determine the exact value of the sine, cosine or tangent of a given angle with a reference angle of 30° , 45° or 60° .	6.2
	2.7 Describe patterns in and among the values of the sine, cosine and tangent ratios for angles from 0° to 360° .	6.2
	2.8 Sketch a diagram to represent a problem.	6.1, 6.2
	2.9 Solve a contextual problem, using trigonometric ratios.	6.1, 6.2

Correlation of WNCP Curriculum to

Pearson Pre-calculus 11

Trigonometry	General Outcome: Develop trigonometric reasoning.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
 3. Solve problems, using the cosine law and sine law, including the ambiguous case. [C, CN, PS, R, T] 	3.1 Sketch a diagram to represent a problem that involves a triangle without a right angle.	6.4, 6.5
	3.2 Solve, using primary trigonometric ratios, a triangle that is not a right triangle.	6.4
	3.3 Explain the steps in a given proof of the sine law or cosine law.	6.4, 6.5
	3.4 Sketch a diagram and solve a problem, using the cosine law.	6.5
	3.5 Sketch a diagram and solve a problem, using the sine law.	6.4
	3.6 Describe and explain situations in which a problem may have no solution, one solution or two solutions.	6.3, 6.4, 6.5

Relations and Functions	General Outcome: Develop algebraic and graphical reason	ing through the study of relations.
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
1. Factor polynomial expressions of the form:	1.1 Factor a given polynomial expression that requires the identification of common factors.	3.1
• $ax^{2} + bx + c, a \neq 0$ • $a^{2}x^{2} - b^{2}y^{2}, a \neq 0, b \neq 0$ • $a(f(x))^{2} + b(f(x)) + c, a \neq 0$	1.2 Determine whether a given binomial is a factor for a given polynomial expression, and explain why or why not.	3.1
• $a^2(f(x))^2 + b^2(g(y))^2$, $a \neq 0$, $b \neq 0$ • $a^2(f(x))^2 - b^2(g(y))^2$, $a \neq 0, b \neq 0$ where a, b and c are rational numbers. [CN, MF, R]	1.3 Factor a given polynomial expression of the form: • $ax^2 + bx + c$, $a \neq 0$ • $a^2x^2 - b^2y^2$, $a \neq 0, b \neq 0$.	3.1
	 1.4 Factor a given polynomial expression that has a quadratic pattern, including: a(f(x))² + b(f(x)) + c, a ≠ 0 a²(f(x))² - b²(g(y))², a ≠ 0, b ≠ 0. 	3.1
 Graph and analyze absolute value functions (limited to linear and quadratic functions) to solve problems. [C, PS, R, T, V] 	2.1 Create a table of values for $y = f(x) $, given a table of values for $y = f(x)$.	8.1
	2.2 Generalize a rule for writing absolute value functions in piecewise notation.	8.1
	2.3 Sketch the graph of $y = f(x) $; state the intercepts, domain and range; and explain the strategy used.	8.1
	2.4 Solve an absolute value equation graphically, with or without technology.	8.2
	2.5 Solve, algebraically, an equation with a single absolute value, and verify the solution.	8.2

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
	2.6 Explain why the absolute value equation $ f(x) < 0$	8.2
	has no solution.	
	2.7 Determine and correct errors in a solution to an absolute value equation.	8.2
	2.8 Solve a problem that involves an absolute value function.	8.1, 8.2
3. Analyze quadratic functions of the form $y = a(x-p)^2 + q$ and determine the:	3.1 Explain why a function given in the form $y = a(x-p)^2 + q$ is a quadratic function.	4.5
• vertex	3.2 Compare the graphs of a set of functions of the form	4.3, 4.4
domain and range	$y = ax^2$ to the graph of $y = x^2$, and generalize, using	
 direction of opening 	inductive reasoning, a rule about the effect of <i>a</i> .	
• axis of symmetry	3.3 Compare the graphs of a set of functions of the form	4.3, 4.4
• x- and y-intercepts.	$y = x^2 + q$ to the graph of $y = x^2$, and generalize,	
[CN, R, T, V]	using inductive reasoning, a rule about the effect	
	$\frac{\text{of } q}{2}$	
	3.4 Compare the graphs of a set of functions of the form $\frac{2}{2}$	4.3, 4.4
	$y = (x - p)^{-1}$ to the graph of $y = x^{-1}$, and generalize,	
	using inductive reasoning, a rule about the effect	
	$\frac{\text{of } p}{25}$	4 4 4 5
	3.5 Determine the coordinates of the vertex for a $\frac{1}{2}$	4.4, 4.5
	quadratic function of the form $y = d(x - p) + q$, and	
	2.6 Concerting and the time reasoning of the form	4.4
	5.0 Generalize, using inductive reasoning, a fulle for	4.4
	determining the coordinates of the vertex for r_{1}	
	quadratic functions of the form $y = a(x-p)^2 + q$.	

Relations and Functions	General Outcome: Develop algebraic and graphical reasor	ing through the study of relations.
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
	3.7 Sketch the graph of $y = a(x - p)^2 + q$, using transformations, and identify the vertex, domain and range, direction of opening, axis of symmetry and <i>x</i> -and <i>y</i> -intercepts.	4.4
	3.8 Explain, using examples, how the values of <i>a</i> and <i>q</i> may be used to determine whether a quadratic function has zero, one or two <i>x</i> -intercepts.	4.4
	3.9 Write a quadratic function in the form $y = a(x-p)^2 + q$ for a given graph or a set of characteristics of a graph.	4.4
 4. Analyze quadratic functions of the form y = ax² + bx + c to identify characteristics of the corresponding graph, including: vertex domain and range 	4.1 Explain the reasoning for the process of completing the square as shown in a given example.	3.3, 4.5
	4.2 Write a quadratic function given in the form $y = ax^2 + bx + c$ as a quadratic function in the form $y = a(x - p)^2 + q$ by completing the square.	4.5
direction of openingaxis of symmetry	4.3 Identify, explain and correct errors in an example of completing the square.	4.5
 x- and y-intercepts and to solve problems. [CN, PS, R, T, V] 	4.4 Determine the characteristics of a quadratic function given in the form $y = ax^2 + bx + c$, and explain the strategy used.	4.1, 4.5, 4.6
	4.5 Sketch the graph of a quadratic function given in the form $y = ax^2 + bx + c$.	4.1, 4.6
	4.6 Verify, with or without technology, that a quadratic function in the form $y = ax^2 + bx + c$ represents the same function as a given quadratic function in the form $y = a(x - p)^2 + q$.	4.5

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
	4.7 Write a quadratic function that models a given	4.4, 4.6, 4.7
	situation, and explain any assumptions made.	
	4.8 Solve a problem, with or without technology, by	4.1, 4.2, 4.4, 4.6, 4.7
	analyzing a quadratic function.	
5. Solve problems that involve quadratic	5.1 Explain, using examples, the relationship among the	4.1, 4.2
equations.	roots of a quadratic equation, the zeros of the	
[C, CN, PS, R, T, V]	corresponding quadratic function and the	
	<i>x</i> -intercepts of the graph of the quadratic function.	
	5.2 Derive the quadratic formula, using deductive	3.4
	reasoning.	
	5.3 Solve a quadratic equation of the form	3.2, 3.3, 3.4, 3.5, 4.2
	$ax^2 + bx + c = 0$ by using strategies such as:	
	 determining square roots 	
	• factoring	
	 completing the square 	
	 applying the quadratic formula 	
	 graphing its corresponding function. 	
	5.4 Select a method for solving a quadratic equation,	3.4, 3.5
	justify the choice, and verify the solution.	
	5.5 Explain, using examples, how the discriminant may	3.5, 4.2, 4.6
	be used to determine whether a quadratic equation	
	has two, one or no real roots; and relate the number	
	of zeros to the graph of the corresponding quadratic	
	function.	
	5.6 Identify and correct errors in a solution to a	3.2, 3.3, 3.4
	quadratic equation.	

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.	
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons
	5.7 Solve a problem by:analyzing a quadratic equationdetermining and analyzing a quadratic equation.	3.2, 3.3, 3.4, 3.5
6. Solve, algebraically and graphically, problems that involve systems of linear-	6.1 Model a situation, using a system of linear-quadratic or quadratic-quadratic equations.	5.4, 5.5
quadratic and quadratic-quadratic equations in two variables. [CN, PS, R, T, V]	6.2 Relate a system of linear-quadratic or quadratic- quadratic equations to the context of a given problem.	5.5
	6.3 Determine and verify the solution of a system of linear-quadratic or quadratic-quadratic equations graphically, with technology.	5.4, 5.5
	6.4 Determine and verify the solution of a system of linear-quadratic or quadratic-quadratic equations algebraically.	5.5
	6.5 Explain the meaning of the points of intersection of a system of linear-quadratic or quadratic-quadratic equations.	5.4, 5.5
	6.6 Explain, using examples, why a system of linear- quadratic or quadratic-quadratic equations may have zero, one, two or an infinite number of solutions.	5.4, 5.5
	6.7 Solve a problem that involves a system of linear- quadratic or quadratic-quadratic equations, and explain the strategy used.	5.4, 5.5

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.		
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons	
 Solve problems that involve linear and quadratic inequalities in two variables. [C, PS, T, V] 	7.1 Explain, using examples, how test points can be used to determine the solution region that satisfies an inequality.	5.2, 5.3	
	7.2 Explain, using examples, when a solid or broken line should be used in the solution for an inequality.	5.2, 5.3	
	7.3 Sketch, with or without technology, the graph of a linear or quadratic inequality.	5.2, 5.3	
	7.4 Solve a problem that involves a linear or quadratic inequality.	5.2, 5.3	
 Solve problems that involve quadratic inequalities in one variable. [CN, PS, V] 	8.1 Determine the solution of a quadratic inequality in one variable, using strategies such as case analysis, graphing, roots and test points, or sign analysis; and explain the strategy used.	5.1	
	8.2 Represent and solve a problem that involves a quadratic inequality in one variable.	5.1	
	8.3 Interpret the solution to a problem that involves a quadratic inequality in one variable.	5.1	
9. Analyze arithmetic sequences and series to solve problems.	9.1 Identify the assumption(s) made when defining an arithmetic sequence or series.	1.1, 1.2	
[CN, PS, R, T]	9.2 Provide and justify an example of an arithmetic sequence.	1.1	
	9.3 Derive a rule for determining the general term of an arithmetic sequence.	1.1	
	9.4 Describe the relationship between arithmetic sequences and linear functions.	1.1	

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.		
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons	
	9.5 Determine t_1 , d , n or t_n in a problem that involves an arithmetic sequence.	1.1	
	9.6 Derive a rule for determining the sum of <i>n</i> terms of an arithmetic series.	1.2	
	9.7 Determine t_1 , d , n or S_n in a problem that involves an arithmetic series.	1.2	
	9.8 Solve a problem that involves an arithmetic sequence or series.	1.1, 1.2	
10. Analyze geometric sequences and series to solve problems.	10.1 Identify assumptions made when identifying a geometric sequence or series.	1.3, 1.4	
[PS, R, T]	10.2 Provide and justify an example of a geometric sequence.	1.3	
	10.3 Derive a rule for determining the general term of a geometric sequence.	1.3	
	10.4 Determine t_1 , r , n or t_n in a problem that involves a geometric sequence.	1.3	
	10.5 Derive a rule for determining the sum of <i>n</i> terms of a geometric series.	1.4	
	10.6 Determine t_1 , r , n or S_n in a problem that involves a geometric series.	1.4, 1.5	
	10.7 Generalize, using inductive reasoning, a rule for determining the sum of an infinite geometric series.	1.6	
	10.8 Explain why a geometric series is convergent or divergent.	1.5, 1.6	
	10.9 Solve a problem that involves a geometric sequence or series.	1.3, 1.4, 1.6	

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.		
Specific Outcomes	Achievement Indicators	Pearson Pre-calculus 11 Lessons	
 11. Graph and analyze reciprocal functions (limited to the reciprocal of linear and quadratic functions). [CN, R, T, V] 	11.1 Compare the graph of $y = \frac{1}{f(x)}$ to the graph of $y = f(x)$.	8.3, 8.4, 8.5	
	11.2 Identify, given a function $f(x)$, values of x for which $y = \frac{1}{f(x)}$ will have vertical asymptotes; and	8.3, 8.4, 8.5	
	values of the related rational expression.		
	11.3 Graph, with or without technology, $y = \frac{1}{f(x)}$, given	8.3, 8.4, 8.5	
	y = f(x) as a function or a graph, and explain the strategies used.		
	11.4 Graph, with or without technology, $y = f(x)$, given $y = \frac{1}{f(x)}$ as a function or a graph, and explain the	8.3, 8.5	
	strategies used.		