

DO THE MATH TEACHER GUIDE SAMPLER

FRACTIONS

This Sampler includes select pages from the Fractions Teacher Guide. You'll see a sample of the
(8) Section Overview
© Instructional Principals
(8) Letter from Marilyn Burns
(5) Planner
(83) Lessons
(3) Annotated WorkSpace
(83 Attitude Survey, Show What You Know, Objectives Tracker, Community News

An Introduction From Marilyn Burns.
...iv
Instructional Principles
... x
ractions B Materials
Fractions B at a Glance ...x x xiv
$x v i$ Table of Contents

LESSONS 11-15

 between numeratoros and denominators to
identify ractions equivalent to $\frac{1}{2}$ dentify fractions equivalent to $\frac{1}{2}$.
Lessons 16-2
Compare Fractions to $\frac{1}{2}$
PAGE Students learn another strategy from the

 identifif whether fractions of a set are
less than, equal 1 o, about equal to, or $\frac{\text { less than, equal }}{\text { greater than } \frac{1}{2} \text {. }}$

Additional Resources

$$
\begin{aligned}
& \text { Attitude Survey. } \\
& \text { Objectives Tracker } \\
& \text { Do The Math Community News } \\
& \text { Teacher Glossary } \\
& \text { Index. } \\
& \text { eacher Glossary }
\end{aligned}
$$

Help At-Risk and Struggling Students Succeed in Math
Research shows that students with diverse needs succeed in learning mathematics through explicit, intentional teaching based on proven instructional strategies.

TEACHING FOR UNDERSTANDING
Students benefit from instruction based on teaching for understanding. Step-by-step lessons help students develop understanding, learn mathematical skills, see relationships, and make connections.

- Learning experiences link concepts and skills to their mathematical representations and language.
- Students use concrete and pictorial models to build a strong foundation in key mathematical build a strong foundation in key mathe
scaffolded content
Scaffolding of the content makes he mathematics more accessible to students.
Do The Math focuses on key content in mathematics so that students are not overwhelmed with extraneous materia
The content is organized into manageable chunks.
The lessons are explicit about the relationships The lessons are explicic
among these chunks.
- The instruction is carefully sequenced to help students build a solid foundation of understanding.
[圂 FRACTIONS MODELS

MULTIPLE STRATEGIES

Exploring different strategies for developing concepts and skills builds students' reasoning.
The lessons engage students with each concept and skill in several ways, deepening their mathematics knowledge.

- Hands-on manipulatives give students concrete experiences with abstract ideas.
- The digital mTools give students the opportunity to translate concrete manipulatives o pictorial representations. Pm
- Classroom and digital partner games offer engaging experiences that reinforce mathematical understandings and skills. 図
Children's literature provides a springboard for instruction.
- Contexts make abstract mathematical ideas accessible.

MATHEMATICAL THINKING
These standards help develop mathematical expertise and habits of mind in all students.

- Students persevere and solve problems and look for entry points to solutions.
- Students reason abstractly to make sens of quantities and their relationships in problem situations.
- Students use stated assumptions, definitions. - Students use stated assumptions, de construct viable arguments.
- Students model with mathematics to solv real-world and mathematical problems. - Students apply mathematical and practical tools strategically when solving problems.
- Students attend to precision, using mathematical language to communicate clearly and accurately.
- Students look closely to discern patterns or structure when solving problems. general methods and shortcuts.

Help Students Build Their
Mathematical Reasoning

cLassroom routines

Routines such as "think, pair, share" promote engagement and deepen student understanding.

$$
\begin{gathered}
\text { THNK } \\
\text { PAudents collect their thoughts individually. } \\
\text { PAIR } \\
\text { Students discuss with a partner. } \\
\text { SHARE } \\
\begin{array}{c}
\text { Students report ideas to the whole group. } \\
\text { Expressing ideas and earino other perspectives } \\
\text { help students clarify their thinking. }
\end{array}
\end{gathered}
$$

- The listening and speaking that occur during "think, pair, share" are especially valuable for English language learners.
Teachers can pair English language learners with other students who speak the same first language to allow them to discuss concepts. - Teachers can also pair a student with early English skills and a student with strong English skills to encourage language development. age development.

INDEPENDENT STUDENT WORK

Assignments provide students with opportunities to practice, strengthen, and extend their learning.

- WorkSpace ${ }^{\ominus}$ assignments are
carefully constructed to motivate students and maximize their success through games, assignments for reinforcement, and
problem-solving situations. problem-solving situations.
- The digital experience gives students the Tlexibility to explore mathematical tools and games within and outside the classroom. ners
\vdots
first
epts.

vocabulary and language

Explicit vocabulary instruction helps students communicate effectively about the math they are learning. Vocabulary is introduced after students experience concepts. Vocabulary lessons follow a consistent routine-the teacher writes the vocabulary on the Math Vocabulary chart and
provides an example; students see, hear, say, provides an example; students see, hear, say,
and write it; the vocabulary is then incorporated and write it; the vocabulary is then incorporat learning.
Key mathematical and academic vocabulary is highlighted at the start of each lesson, and Spanish translations are provided.
A glossary in the WorkSpaceө provides students with a reference for definitions.

ASSESSMENT AND DIFFERENTIATION
Ongoing assessment is built into the program to help teachers meet individual student needs.
During lessons, teachers observe students working in the whole group, with partners, and independently.

- Specific guidance for how to promote
understanding and address student misconceptions is integrated into all lessons. - Suggestions for differentiating instruction are included after every "Assessing Student Understanding" lesson, both for students who need additional help and those who are ready for a challenge.

FROM MARILYN BURNS

Dear Colleague,

. ner frith with common denominators. For this strategy, students
 fin eminator each represent 1 whole cut into the fractions with the sam the reason that the fraction with the same number of equal pieces. Wer, therefore, is the greater fraction greater numerator has mith their fraction kit pieces.
Finally they confirm by cornd

The lessons also engage students in relating fractions to parts of sets, The lessons also engage ste whole. The illustrations in the book rather than pars? provide contexts for identifying the numerators and How Many Snails? provional parts of sets. Each spread in the book presents denominators of en sets of simila questions that ask readers to observe, books, and others. The questions objects-clouds, flowers, fish, fres fention of being answered with whole in the book were written wer are reworded so that students numbers; however, for these lessons, they
$\frac{3}{8}$ of the 8 clouds are big and fluffy.
$\frac{4}{8}$ of the 8 clouds are white. respond with answers that are fractions.

In Lessons 6-10 students...

- Compare fractions with common numerators and
- Name parts of a set as
- Name parts of a set as
fractions and use standard fractions and use standard
notation.
- Solve problems using
fractions.
- Communicate ideas with key math vocabulary: numerator, common
numerator, denominator numerator, denominiotor,
unit fraction, and common denominator.
\qquad

Students then move beyond the book to identify fractiona parts of other sets. Also, they draw their own representation of fractions as parts of sets. These lessons extend studation, experience beyond the fractions lessons extend students $\frac{4}{7}$ of the circles have an X in them.

$$
\triangle \otimes \triangle \bigcirc \bigcirc \bigcirc
$$

66 The lessons also engage students in relating fractions to parts of sets, rather than parts of a single whole. 99

Learn more at Heinemann.com/DoTheMath

LESSON 10 Assessing Student Understanding
assessment \checkmark Progress Monitoring

```
Objectives
    - Compare fractions with common numerators and 
    common denominators.
    - Name parts of sets as fractions and use
    - Represent fractional parts of sets with drawings
    - Represent fractional patsorse
    - Solve problems using fractions.
    - Communicate ideas with key math vocabulary:
    common numerator, unit fraction, and common
```

 L
 Use the annotated pages to correct WorkSpace

Note the progress of each student in the appropriate

Differentiating Instruction Although the lessons are carefully scaffolded and
paced at a rate most likely to give students a chance paced at a rate most likely to give students a chance
for optimal learning, there will be instances when for optimat learning, there will be instances when
some students are still struggling and need extra
suppot support. Likewise, there will be instances when some students would benefit from additional
practice. Try the teaching ideas below.
For Students Who Need More Support

- If students have difficiculty comparing fractions using the
three tookikitstrategies that have been presented, have three toolkits strategies that have been presented, have
them practice comparing fractions that can be verified with them practice comparing fractions that can be everified with
their fraction strips. Have students think and predict whict frear fraction strips. Have students think and predict which
fraction will be greater, then check using the fraction strips.

For Students Ready for a Challenge

- Have students grab a handful of change and use it to describe parts of a set.

In this example, the set of coins can be described in the
In this example,

- $\frac{4}{10}$ quarters
- $\frac{6}{10}$ pennies
$-\frac{7}{10}$ heads
$-\frac{3}{10}$ tails
Students can ask each other questions about their sets of coins. It is easy to grab different handfuls of coins to com
up with many different sets and fractions of sets.

ATTITUDE SURVEY

Name:

1. I like math.

O not at all
O a little
O some, but it's not my favorite
O it's my favorite subject
2. I am good at math.

O not at all
O not very good
O fairly good
O very good
3. I need good math skills so I can get
a good job when I am older.
O agree a lot
O agree a little
O disagree a little
O disagree a lot be solved using different strategies.
O agree a lot
O agree a little
O disagree a little
O disagree a lot

- Which of these do you agree with? You may choose more than one answer.

7. When math is challenging, 1

O take on the challenge.
O give up easily.
O put in a little effort.
O put in a lot of effort.
O ask my teacher for help.
> Write an answer to each question.
8. What do you like most about math? Explain.
4. I can get better in math if I work hard

O agree a lot
O agree a little
O disagree a little
O disagree a lot

5. I like solving different problems.

O agree a lot
O agree a little
O disagree a little
O disagree a lot

II

Students complete "Show What You Know" assignments every fifth understanding of the concepts and skills from the previous four lessons. understanding of the concepts and skills from the previous four lessons.

Show What You Know

DIRECTIONS
> Use these strategies to compare each pair of fractions. Strategy 1: compare unit fractions $\frac{1}{6}>\frac{1}{8}$
Strategy 2: compare fractions with common numerators $\frac{3}{12}<\frac{3}{4}$
Strategy 3: compare fractions with common denominators $\frac{1}{4}<\frac{2}{4}$
Write < or > between each pair.
(1) $\frac{2}{7}>\frac{2}{10}$
(2) $\frac{1}{5}<\frac{1}{4}$
(3) $\frac{2}{9}<\frac{3}{9}$
(4) $\frac{5}{4}>\frac{5}{6}$
(5) $\frac{1}{3}>\frac{1}{8}$
(6) $\frac{3}{8}>\frac{2}{8}$
(7) $\frac{1}{16}<\frac{1}{11}$
(8) $\frac{4}{8}<\frac{4}{5}$
(9) $\frac{7}{12}<\frac{11}{12}$
(10) $\frac{8}{10}>\frac{8}{12}$

Show What You Know

DIRECTIONS
> Draw the whole set and mark the fractional part.

> How do you know how many represent the whole set and the fractional part?

I know that the denominator of the fraction represents the total number in the whole set. The numerator represents the fractional part.
Community News Do The
 Math - 5
星等
FRACTIONS B Equivalence and Comparison
LESSONS 1-5
UPDATE: Students learn strategies for comparing fractions with the same numerator. For example, they

$$
\begin{aligned}
& \text { Uearn that } \frac{1}{4} \text { is greater than } \frac{1}{8} \text { and } \frac{2}{3} \text { is greater than } \frac{2}{5} \text {. }
\end{aligned}
$$

Fraction Flags

> Here is an activity that will give your child practice comparing fractions.
In each of the flags below, part of the flag is white. Write a fraction for the white
part of each flag. Then put the fractions in order from least to greatest.
Here is a hint: write each fraction with the same numerator, 2 .

