

DO THE MATH TEACHER GUIDE SAMPLER

ADDITION \& SUBTRACTION, NUMBER CORE

This Sampler includes select pages from the Addition \& Subtraction, Number Core Teacher Guide. You'll see a sample of the:
(3) Instructional Principals
(3) Letter from Marilyn Burns
(3) Planner
(3) Lessons
(8) Annotated WorkSpace

$\boldsymbol{4} \boldsymbol{\otimes} \boldsymbol{O}$

Help At-Risk and Struggling Students Succeed in Math
Research shows that students with diverse needs succeed in learning mathematics through explicit, intentional teaching based on proven instructional strategies.

TEACHNG For UNDERSTANDING

Students benefit from instruction based on teaching for understanding. Step-by-step lessons help students develop understanding, learn mathematical skills, see relationships, and make connections.
Learning experiences link concepts and skills to their mathematical representations and language.
Students use concrete and pictorial models to build a strong foundation in key mathematical concepts, operations, and strategies.
scaffolded content
Scaffolding of the content makes the mathematics more accessible to students.
Do The Math focuses on key content in mathematics so that students are not overwhelmed with extraneous material.

- The content is organized into manageable chunks.
- The lessons are explicit about the relationships among these chunks.
- The instruction is carefully sequenced to help students build a solid foundation of understanding.
 place value

Help Students Build Their

Mathematical Reasoning

CLASSROOM ROUTiNEs
Routines such as "think, pair, share" promote engagement and deepen student understanding.

$$
\begin{aligned}
& \text { Students collect their thoug } \\
& \begin{array}{|c}
\text { PAIR } \\
\text { Students discuss with a partner. } \\
\hline
\end{array} \\
& \text { SHARE } \\
& \begin{array}{l}
\text { Students report ideas to the whole group. } \\
\text { Expressing ideas and hearing other perspectives }
\end{array} \\
& \begin{array}{l}
\text { Pressing ideas and hearing other perspec } \\
\text { help students claríy their thinking }
\end{array} \\
& \text { help students clarify their thinking. }
\end{aligned}
$$

-The listening and speaking that occur during "think, pair, share" are especially valuable for English language learners.
Teachers can pair English language learners Teachers can pair English language learners language to allow them to discuss concepts.
Teachers can also pair a student with early English skills and a student early English skills and a student language development.

independent student work

Assignments provide students with opportunities to practice, strengthen, and extend their learning

- WorkSpace ${ }^{\text {assignments }}$ are

carefully constructed to motivate students and maximize their success through games, assignments for reinforcement, and problem-solving situations

- The digital experience gives students the flexibility to explore mathematical tools and games within and outside the classroom

vocabulary and language

Explicit vocabulary instruction helps students communicate effectively about the math they are learning Vocabulary is introduced after student experience concepts. Vocabulary lessons ollow a consistent routine-the teacher writes nd provides an example; students see, hear say, and write it; and the vocabulary is then incorporated throughout the lessons to support students' learning.
Key mathematical and academic vocabulary is highlighted at the start of each lesson, and Spanish translations are provided.

A glossary in the WorkSpace ${ }^{\oplus}$ provides students with a reference for definitions.

Assessment and differentiation
Ongoing assessment is built into the program to help teachers meet individual student needs.
During lessons, teachers observe students working in the whole group, with partners, and independently.

Specific guidance for how to promote understanding and address student misconceptions is integrated into all lessons.
Suggestions for differentiating instruction are included after every "Assessing Student Understanding" lesson, both for students who need additional help and those who are ready for a challenge.

Students are then introduced to another visual tool-the
ten-frame. The ten-fro that helps students use is ideal for providing a structure numbers and fints use the benchmark number of 5 to build is is useful for building students' number sense and sum a 5 sums to 10 .

Students use the ten-frames along with the two-color counters for a
activity-Roll and Add-which gives them two-color counters for a new Students also revisit Shake and Spill and Racte to figuring sums to 10. activities to numbers greater than 5. They also to the Top, now applying these addends for sums to 10 .
Marsyon
. his module has been specica. The number 5 is an important benchmark in oundation the first two lessons ease students into the our base-ten number system, and addends that make 5 .
module with a focus on pars ingal tool. They engage in two Students use two-color counters as the Top. A variety of games and activities-Shake and Spill and the module to motivate students activities like these are woven trous first twities, students spill interest and support their learning. In these frist 5 and then record the

$$
66_{\text {The number } 5} \text { is an }
$$ important benchmark in our base-ten number our base-ten

system. 99

Dear Colleague, five counters to generate
students...

- Use the benchmark of 5 to
represent sums of 6 to 9 .
- Identity pairs of addends with sums to 9 .
- Communicate ideas with key math vocabulary: add, key math vocabuiary: add,
addend, addition, equals, equation, plus, and sum.

FROM MARILYN BURNS

Call 800.225.5800 or visit
 Heinemann.com/DoTheMath

Created by
Marilyn Burns

NEW From Heinemann Math Listening to Learn

By Marilyn Burns and Lynne Zolli

A K-5 Digital Interview Tool to help teachers learn how their students reason numerically-information that's essential for planning instruction.

LISTENINGTOLEARN.COM

DO THE MATH TEACHER GUIDE SAMPLER

MULTIPLICATION

This Sampler includes select pages from the Multiplication Teacher Guide You'll see a sample of the:
© ${ }^{3}$ Section Overview
© Instructional Principals
(3) Letter from Marilyn Burns
© Planner
(8) Lessons
(3) Annotated WorkSpace
© Show What You Know, Objectives Tracker Community News

Help At-Risk and Struggling Students Succeed in Math
Research shows that students with diverse needs succeed in learning mathematics through explicit, intentional teaching based on proven instructional strategies.

TEACHING FOR UNDERSTANDING
Students benefit from instruction based on teaching for understanding. Step-by-step lessons help students develop understanding, learn mathematical skills, se relationships, and make connections.

- Learning experiences link concepts and skills to their mathematical representations and language.
Students use concrete and pictorial models to build a strong foundation in key mathematical concepts, operations, and strategies.
scafFolded content
Scaffolding of the content makes the mathematics more accessible to students.
Do The Math focuses on key content in mathematics so that students are not overwhelmed with extraneous materia
- The content is organized into manageable chunks.
The lessons are explicit about the relationships among these chunks.
- The instruction is carefully sequenced to help students build a solid foundation of understanding.
[遈 MULTIPLICATION MODELS

- Hands-on manipulatives give students concrete experiences with abstract ideas.
- The digital mTools give students the opportunity to translate concrete manipulative pictorial representations.
- Classroom and digital partner games offer engaging experiences that reinforce mathematical understandings and skills. 苗

Children's literature provides a springboard for instruction.
Contexts make abstract mathematical ideas accessible.

MATHEMATICAL THINKING
These standards help develop mathematical expertise and habits of mind in all students.

- Students persevere and solve problems and look for entry points to solutions.
Students reason abstractly to make sens of quantities and their relationships in problem situations.
Students use stated assumptions, definitions, and previously established results to construct viable arguments.

Students model with mathematics to solv real-world and mathematical problems. - Students apply mathematical and practical tools strategically when solving problems.
Students attend to precision, using mathematical language to communicate clearly and accurately.

- Students look closely to discern patterns or structure when solving problems. general methods and shortcuts.

Instructional Principles (continued)
Help Students Build Their
Mathematical Reasoning

CLASSROOM ROUTINES

Routines such as "think, pair, share" promote engagement and deepen student understanding.

$$
\begin{aligned}
& \text { THNK } \\
& \text { Students collect their thoughts individually. } \\
& \text { PAIR } \\
& \text { Students discuss with a partner. } \\
& \hline \text { SHARE } \\
& \begin{array}{c}
\text { Students report ideas to the whole group. } \\
\text { Expressing ideas and eearinother perspectives } \\
\text { help students clarity their thinking. }
\end{array}
\end{aligned}
$$

- The listening and speaking that occur during "think, pair, share" are especially valuable for English language learners.
- Teachers can pair English language learners with other students who speak the same first language to allow them to discuss concepts.
- Teachers can also pair a student with early English skills and a student with strong English skills to encourage language development.

INDEPENDENT STUDENT WORK

Assignments provide students with opportunities to practice, strengthen, and extend their learning.

- WorkSpace ${ }^{\ominus}$ assignments are
carefully constructed to motivate students and maximize their success through games, assignments for reinforcement, and
problem-solving situations.
- The digital experience gives students the Tlexibility to explore mathematical tools and games within and outside the classroom.

Vocabulary and language

Explicit vocabulary instruction helps students communicate effectively about the math they are learning. Vocabulary is introduced after students experience concepts. Vocabulary lessons follow a consistent routine-the teacher writes the vocabulary on the Math Vocabulary chart and
provides an example; students see, hear say and write it; the vocabulary is then incorpoorated throughout the lessons to support students' learning.

- Key mathematical and academic vocabulary is highlighted at the start of each lesson, and Spanish translations are provided.
A glossary in the WorkSpace® provides students with a reference for definitions.

ASSESSMENT AND DIFFERENTIATION
Ongoing assessment is built into the program to help teachers meet individual student needs.
During lessons, teachers observe students During lessons, teachers observe students
working in the whole group, with partners, and independently.

- Specific guidance for how to promote understanding and address student misconceptions is integrated into all lessons. - Suggestions for differentiating instruction are included after every "Assessing Student Understanding" lesson, both for students who need additional help and those who are ready for a challenge.

FROM MARILYN BURNS

In Lessons 1-5
students...

- Calculate products with
factors 0 through 12 .

Represent arrangements
of equal rows an
rectangles with
multiplication equations.

- Use the Commutative
-Use the Commutative
Property of Multiplication to solve problems.
Communicate ideas with key math vocabulary: multiplication equation, factor, and product.

Dear Colleague,

Me Multiplication Chart is a mathematical icon in the plenary grades, The Multiplication Multiplication facts is both a rite of passage for students and learning the multiplication facts success. Students typically are and a gatekeeper for their continued success. Sher in their study of multiplication. introduced to the Multiplication thar e chert to find the products of factors While they learn early on how to use the chaltiplication Chart was created. through 12 , most have not learned what multiplication means is fragile, Also, for many, their understanding of who mysterious.
thus making the Multiplication Coning of multiplication by In these lessons, students first focus on wal rows to multiplication equations. connecting arrangements of tiles in equal

$4 \times 5=20$

Students practice finding the total number of tiles arranged in equal row and writing multiplication equations to represent them with the game

$\square \square \square \square \square$ ■■■■■

Students review the vocabulary factor and product and
how to use the Multiplication Chart to check their answers.
les on grid pa rn to record the arrangements of equal rows of
.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline X & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\
\hline 3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 \\
\hline 4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\hline 5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 \\
\hline
\end{array}
$$

These experiences prepare students
for exploring patterns on the
Multiplication Chart and learning
Multiplication Chart and learning
to relate the number of squares in
rectangles to products on the chart.

66 Learning the multiplication facts is both a rite of passage for students and a gatekeeper for their continued success.

Note the progress of each student in the appropriate rows on
guide．
Re－evaluating Student Placement
As you review each student＇s work from these four lessons and the assessment，you may suspect
that a student does not have the foundations he or she needs to be successful in this module．You can use the End－of－Modulu Assessment from Do The Math m ：Multipliciction A to find out if the
student has the necessary prerequisite skills．If the student does not score 80\％on this assessment， or struggles to complete it，he or she will need additional guidance．Module A A ad
prerequisite concepts and skills．

Differentiating Instruction Although the lessons are carefully scaffolded and
paced at a rate more likely to give students a paced at a rate more likely to ogive students a
chance for optimal learning，there will be instanc when students are still struggling and need extra
support Also there will he instances when support．Also，there will be instances when
students would benefit from additional challenges students would benentit from add ditional cha
or practice．Try the teaching ideas below．

For Students Who Need More Support

－Provide one－on－one additional practice for students to help remember the products．
－Have students locate the product on the Multiplication Chart
－Doing this when there is a minute or two of extra time provides students with more opportunity to hear and say factors and products．
－Play the game Tiles Capture with students to help use
strategies for finding strategies for finding product
multipication language．因
－There are 4 rows with 3 tiles in each row．
－There are 4 equal groups with 3 in each group．
－there are 4 equal groups of 3 tilies is 4 times 3 tiles．
－Game instructions are avaiable in the Teacher Bookcase， as well as on the Do The Math digital resources．目

for Students Ready for a Challenge

－Have students play the game Tap It．©图 －Game directions are available from the Mutipilication
－Game directions are avaliable from the Mutitilication
B game cariation notes on the Do The Math digital
resources．
－Provide students with different numbers of tiles to build more rectangles．
－Choose composite numbers of tiles such as 8,9 ，or 14 ．
－Building the rectangles－and writing the related equations－reinforces the idea that the number of tiles
used to form a rectangle is the product of the number rows and the number of filis in eachuct of －It also reinforces the connection between the number of －It also reinforces the connection between the number
tiles and the product on the Multiplication Chart tiles and the product on the Multipicication Chat

Students complete＂Show What You Know＂assignments every fifth
lesson．These assignments help you monitor student progress and asse understanding of the concepts and skills from the previous four lessons．

Show What You Know

Here is an example with 8 tile

Aome Note：Vour child draws rectangles and writes equations for them

Write Products and Factors
DIRECTIONS
> Write the products.
> You may use the Multiplication Chart to find or check your answers.

X	1	2	3	4	5	6	7	8	9	10	11	12
	1			4	5	6		8				

| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | | | | | | | | | | | |

$\begin{array}{lllllllllllllll}2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24\end{array}$
$\begin{array}{llllllllllllll}3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36\end{array}$
$\begin{array}{llllllllllllll}4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48\end{array}$
$\begin{array}{llllllllllllll}5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60\end{array}$

| -6 | 6 | 12 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllll}7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 & 71 & 84\end{array}$
$\begin{array}{lllllllllllll}8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 & 88 & 96\end{array}$

| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 10 | 120 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

121224364860728496108120132144

Do The Math

Created by Marilyn Burns

(1) $8 \times 6=48$	(6) $5 \times 10=50$	(11) $7 \times 4=\boxed{ }=4$
(2) $2 \times 9=18$ (7) $8 \times 8=64$ (12) $10 \times 3=30$ (3) $3 \times 8=24$ (8) $12 \times 10=120$ (13) $9 \times 8=72$ (4) $9 \times 9=81$ (9) $6 \times 6=36$ (144) $6 \times 5=30$ (5) $11 \times 4=44$ (10) $5 \times 3=45$ (15) $2 \times 12=24$		

(10) Lesson 5

Home Note: Your child writes productst in equations.

DO THE MATH TEACHER GUIDE SAMPLER

FRACTIONS

This Sampler includes select pages from the Fractions Teacher Guide. You'll see a sample of the
(8) Section Overview
© Instructional Principals
(8) Letter from Marilyn Burns
(5) Planner
(83) Lessons
(3) Annotated WorkSpace
(83 Attitude Survey, Show What You Know, Objectives Tracker, Community News

An Introduction From Marilyn Burns.
...iv
Instructional Principles
... x
ractions B Materials
Fractions B at a Glance ...x x xiv
$x v i$ Table of Contents

LESSONS 11-15

 between numeratoros and denominators to
identify ractions equivalent to $\frac{1}{2}$ dentify fractions equivalent to $\frac{1}{2}$.
Lessons 16-2
Compare Fractions to $\frac{1}{2}$
PAGE Students learn another strategy from the

 identifif whether fractions of a set are
less than, equal 1 o, about equal to, or $\frac{l}{l}$ less than, equal greater than $\frac{1}{2}$.

Additional Resources

$$
\begin{aligned}
& \text { Attitude Survey. } \\
& \text { Objectives Tracker } \\
& \text { Do The Math Community News } \\
& \text { Teacher Glossary } \\
& \text { Index. } \\
& \text { eacher Glossary }
\end{aligned}
$$

Help At-Risk and Struggling Students Succeed in Math
Research shows that students with diverse needs succeed in learning mathematics through explicit, intentional teaching based on proven instructional strategies.

TEACHING FOR UNDERSTANDING
Students benefit from instruction based on teaching for understanding. Step-by-step lessons help students develop understanding, learn mathematical skills, see relationships, and make connections.

- Learning experiences link concepts and skills to their mathematical representations and language.
- Students use concrete and pictorial models to build a strong foundation in key mathematical build a strong foundation in key mathe
scaffolded content
Scaffolding of the content makes he mathematics more accessible to students.
Do The Math focuses on key content in mathematics so that students are not overwhelmed with extraneous materia
The content is organized into manageable chunks.
The lessons are explicit about the relationships The lessons are explicic
among these chunks.
- The instruction is carefully sequenced to help students build a solid foundation of understanding.
[圂 FRACTIONS MODELS

MULTIPLE STRATEGIES

Exploring different strategies for developing concepts and skills builds students' reasoning.
The lessons engage students with each concept and skill in several ways, deepening their mathematics knowledge.

- Hands-on manipulatives give students concrete experiences with abstract ideas.
- The digital mTools give students the opportunity to translate concrete manipulatives o pictorial representations. Pm
- Classroom and digital partner games offer engaging experiences that reinforce mathematical understandings and skills. 図
Children's literature provides a springboard for instruction.
- Contexts make abstract mathematical ideas accessible.

MATHEMATICAL THINKING
These standards help develop mathematical expertise and habits of mind in all students.

- Students persevere and solve problems and look for entry points to solutions.
- Students reason abstractly to make sens of quantities and their relationships in problem situations.
- Students use stated assumptions, definitions. - Students use stated assumptions, de construct viable arguments.
- Students model with mathematics to solv real-world and mathematical problems. - Students apply mathematical and practical tools strategically when solving problems.
- Students attend to precision, using mathematical language to communicate clearly and accurately.
- Students look closely to discern patterns or structure when solving problems. general methods and shortcuts.

Help Students Build Their
Mathematical Reasoning

cLassroom routines

Routines such as "think, pair, share" promote engagement and deepen student understanding.

$$
\begin{gathered}
\text { THNK } \\
\text { PAudents collect their thoughts individually. } \\
\text { PAIR } \\
\text { Students discuss with a partner. } \\
\text { SHARE } \\
\begin{array}{c}
\text { Students report ideas to the whole group. } \\
\text { Expressing ideas and earino other perspectives } \\
\text { help students clarify their thinking. }
\end{array}
\end{gathered}
$$

- The listening and speaking that occur during "think, pair, share" are especially valuable for English language learners.
Teachers can pair English language learners with other students who speak the same first language to allow them to discuss concepts. - Teachers can also pair a student with early English skills and a student with strong English skills to encourage language development. age development.

INDEPENDENT STUDENT WORK

Assignments provide students with opportunities to practice, strengthen, and extend their learning.

- WorkSpace ${ }^{\ominus}$ assignments are
carefully constructed to motivate students and maximize their success through games, assignments for reinforcement, and
problem-solving situations. problem-solving situations.
- The digital experience gives students the Tlexibility to explore mathematical tools and games within and outside the classroom. ners
\vdots
first
epts.

vocabulary and language

Explicit vocabulary instruction helps students communicate effectively about the math they are learning. Vocabulary is introduced after students experience concepts. Vocabulary lessons follow a consistent routine-the teacher writes the vocabulary on the Math Vocabulary chart and
provides an example; students see, hear, say, provides an example; students see, hear, say,
and write it; the vocabulary is then incorporated and write it; the vocabulary is then incorporat learning.
Key mathematical and academic vocabulary is highlighted at the start of each lesson, and Spanish translations are provided.
A glossary in the WorkSpaceө provides students with a reference for definitions.

ASSESSMENT AND DIFFERENTIATION
Ongoing assessment is built into the program to help teachers meet individual student needs.
During lessons, teachers observe students working in the whole group, with partners, and independently.

- Specific guidance for how to promote
understanding and address student misconceptions is integrated into all lessons. - Suggestions for differentiating instruction are included after every "Assessing Student Understanding" lesson, both for students who need additional help and those who are ready for a challenge.

FROM MARILYN BURNS

Dear Colleague,

. ner frith with common denominators. For this strategy, students
 fin eminator each represent 1 whole cut into the fractions with the sam the reason that the fraction with the same number of equal pieces. Wer, therefore, is the greater fraction greater numerator has mith their fraction kit pieces.
Finally they confirm by corn

The lessons also engage students in relating fractions to parts of sets, The lessons also engage ste whole. The illustrations in the book rather than pars? provide contexts for identifying the numerators and How Many Snails? provional parts of sets. Each spread in the book presents denominators of en sets of simila questions that ask readers to observe, books, and others. The questions objects-clouds, flowers, fish, fres fention of being answered with whole in the book were written wer are reworded so that students numbers; however, for these lessons, they
$\frac{3}{8}$ of the 8 clouds are big and fluffy.
$\frac{4}{8}$ of the 8 clouds are white.

In Lessons 6-10 students...

- Compare fractions with common numerators and
- Name parts of a set as
- Name parts of a set as
fractions and use standard fractions and use standard
notation.
- Solve problems using
fractions.
- Communicate ideas with key math vocabulary: numerator, common
numerator, denominator numerator, denominiotor,
unit fraction, and common denominator.
Students then move beyond the book to identify fractiona parts of other sets. Also, they draw their own representation of fractions as parts of sets. These lessons extend studation, experience beyond the fractions lessons extend students $\frac{4}{7}$ of the circles have an X in them.

$$
\triangle \otimes \triangle \bigcirc \bigcirc \bigcirc
$$

66 The lessons also engage students in relating fractions to parts of sets, rather than parts of a single whole. 99

LESSON 10 Assessing Student Understanding
assessment \checkmark Progress Monitoring

```
Objectives
    - Compare fractions with common numerators and 
    common denominators.
    - Name parts of sets as fractions and use
    - Represent fractional parts of sets with drawings
    - Represent fractional patsorse
    - Solve problems using fractions.
    - Communicate ideas with key math vocabulary:
    common numerator, unit fraction, and common
```

 L
 Use the annotated pages to correct WorkSpace

Note the progress of each student in the appropriate

Differentiating Instruction Although the lessons are carefully scaffolded and
paced at a rate most likely to give students a chance paced at a rate most likely to give students a chance
for optimal learning, there will be instances when for optimat learning, there will be instances when
some students are still struggling and need extra
suppot support. Likewise, there will be instances when some students would benefit from additional
practice. Try the teaching ideas below.
For Students Who Need More Support

- If students have difficiculty comparing fractions using the
three tookikitstrategies that have been presented, have three toolkit strategies that have been presented, have
them practice comparing fractions that can be verified with them practice comparing fractions that can be everified with
their fraction strips. Have students think and predict whict frear fraction strips. Have students think and predict which
fraction will be greater, then check using the fraction strips.

For Students Ready for a Challenge

- Have students grab a handful of change and use it to describe parts of a set.

In this example, the set of coins can be described in the
In this example,

- $\frac{4}{10}$ quarters
- $\frac{6}{10}$ pennies
$-\frac{7}{10}$ heads
$-\frac{3}{10}$ tails
Students can ask each other questions about their sets of coins. It is easy to grab different handfuls of coins to com
up with many different sets and fractions of sets.

ATTITUDE SURVEY

Name:

1. I like math.

O not at all
O a little
O some, but it's not my favorite
O it's my favorite subject
2. I am good at math.

O not at all
O not very good
O fairly good
O very good
3. I need good math skills so I can get
a good job when I am older.
O agree a lot
O agree a little
O disagree a little
O disagree a lot be solved using different strategies.
O agree a lot
O agree a little
O disagree a little
O disagree a lot

- Which of these do you agree with? You may choose more than one answer.

7. When math is challenging, 1

O take on the challenge.
O give up easily.
O put in a little effort.
O put in a lot of effort.
O ask my teacher for help.
> Write an answer to each question.
8. What do you like most about math? Explain.
4. I can get better in math if I work hard

O agree a lot
O agree a little
O disagree a little
O disagree a lot

5. I like solving different problems.

O agree a lot
O agree a little
O disagree a little
O disagree a lot

II

Students complete "Show What You Know" assignments every fifth understanding of the concepts and skills from the previous four lessons. understanding of the concepts and skills from the previous four lessons.

Show What You Know

DIRECTIONS
> Use these strategies to compare each pair of fractions. Strategy 1: compare unit fractions $\frac{1}{6}>\frac{1}{8}$
Strategy 2: compare fractions with common numerators $\frac{3}{12}<\frac{3}{4}$
Strategy 3: compare fractions with common denominators $\frac{1}{4}<\frac{2}{4}$
Write < or > between each pair.
(1) $\frac{2}{7}>\frac{2}{10}$
(2) $\frac{1}{5}<\frac{1}{4}$
(3) $\frac{2}{9}<\frac{3}{9}$
(4) $\frac{5}{4}>\frac{5}{6}$
(5) $\frac{1}{3}>\frac{1}{8}$
(6) $\frac{3}{8}>\frac{2}{8}$
(7) $\frac{1}{16}<\frac{1}{11}$
(8) $\frac{4}{8}<\frac{4}{5}$
(9) $\frac{7}{12}<\frac{11}{12}$
(10) $\frac{8}{10}>\frac{8}{12}$

Show What You Know

DIRECTIONS
> Draw the whole set and mark the fractional part.

> How do you know how many represent the whole set and the fractional part?

I know that the denominator of the fraction represents the total number in the whole set. The numerator represents the fractional part.
Community News Do The
 Math - 5
星等
FRACTIONS B Equivalence and Comparison
LESSONS 1-5
UPDATE: Students learn strategies for comparing fractions with the same numerator. For example, they

$$
\begin{aligned}
& \text { Uearn that } \frac{1}{4} \text { is greater than } \frac{1}{8} \text { and } \frac{2}{3} \text { is greater than } \frac{2}{5} \text {. }
\end{aligned}
$$

Fraction Flags

> Here is an activity that will give your child practice comparing fractions.
In each of the flags below, part of the flag is white. Write a fraction for the white
part of each flag. Then put the fractions in order from least to greatest.
Here is a hint: write each fraction with the same numerator, 2 .

DO THE MATH TEACHER GUIDE SAMPLER

DIVISION

This Sampler includes select pages from the Division Teacher Guide.
You'll see a sample of the:

(2) Section Overview
(3) Instructional Principals
© Letter from Marilyn Burns
(8) Planner
(8) Lessons
(3) Annotated WorkSpace
(8) Attitude Survey, Show What You Know

Objectives Tracker, Community News
-

 PAGE $\begin{aligned} & \text { Stuvidents by Two- pobems by dividin } \\ & \text { Stuo-digitand three--ligit divididends by }\end{aligned}$ 117 two-digit divisors.
> Additional Resources

Attitude Survey	141
Objectives Tracker	142
Do The Math Community News	143
Reproducibles.	149
Teacher Glossary	150
	153

141
142
143 149 .150

Help At-Risk and Struggling Students Succeed in Math
Research shows that students with diverse needs succeed in learning mathematics through explicit, intentional teaching based on proven instructional strategies.

TEACHING FOR UNDERSTANDTNG

Students benefit from instruction based on teaching for understanding. Step-by-step lessons help students develop understanding, learn mathematical skills, see relationships, and make connections.

- Learning experiences link concepts and skills to their mathematical representations and language.
Students use concrete and pictorial models to build a strong foundation in key mathematical concepts, operations, and strategies.
scaffolded content
Scaffolding of the content makes the mathematics more accessible to students.
Do The Math focuses on key content in mathematics so that students are not overwhelmed with extraneous materia
- The content is organized into manageable chunks.
The lessons are explicit about the relationships among these chunks.
- The instruction is carefully sequenced to help students build a solid foundation of understanding.
[圂 DIVISION MODELS

Pennies and dimes are divided by 10 are e divided by 10
to model grouping problems.
 Tiles represent the division of concrete objects into equal groups.

Number cubes
Number cubes
generate random generate random
numbers in division games.

Division Bingo cards Division Bingo cards
build students' butid students
fluency with division

The lessons engage students with each conce and skill in several ways, deepening their mathematics knowledge.

- Hands-on manipulatives give students concrete experiences with abstract ideas.
- The digital mTools give students the opportunity to translate concrete manipulative to pictorial representations.
- Classroom and digital partner games offer engaging experiences that reinforce mathematical understanding and skills. 图
- Children's literature provides a springboard for instruction.
- Contexts make abstract mathematical ideas accessible.

MATHEMATICAL THINKING
These standards help develop mathematical expertise and habits of mind in all students.

- Students persevere and solve problems and look for entry points to solutions.
- Students reason abstractly to make sense of quantities and their relationships in problem situations
Students use stated assumptions, definitions and previously established results to construct viable arguments.
Students model with mathematics to solve real-world and mathematical problems. - Students apply mathematical and practical tools strategically when solving problems.
- Students attend to precision, using mathematical language to communicate clearly and accurately.
- Students look closely to discern patterns or structure when solving problems. general methods and shotcuts.

Help Students Build Their

Mathematical Reasoning

CLASSROOM ROUTINES

Routines such as "think, pair, share" promote engagement and deepen student understanding

$$
\begin{aligned}
& \text { THNK } \\
& \text { Students collect their thoughts individually. } \\
& \text { PAIR } \\
& \text { Students discuss with a partner. } \\
& \text { SHARE } \\
& \begin{array}{c}
\text { Students report ideas to the whole group. } \\
\text { Expressing ideas and eearinother perspectives } \\
\text { help students clarity their thinking. }
\end{array}
\end{aligned}
$$

-The listening and speaking that occur during "think, pair, share" are especially valuable for English language learners.

- Teachers can pair English language learners with other students who speak the same first language to allow them to discuss concepts.
- Teachers can also pair a student with
early English skills and a student with strong English skills to encourage language development.

independent student work

Assignments provide students with opportunities to practice, strengthen, and extend their learning.
WorkSpace ${ }^{\oplus}$ assignments are
carefully constructed to motivate students and maximize their success through games, assignments for reinforcement, and problem-solving situations.

- The digital experience gives students the flexibility to explore mathematical tools and games within and outside the classroom.

Vocabulary and language

Explicit vocabulary instruction helps students communicate effectively about the math they are learning. Vocabulary is introduced after students experience concepts. Vocabulary lessons
follow a consistent routine-the teacher write follow a consistent routine-the teacher writes and provides an example; students see, hear, say, and write it; and the vocabulary is then incorporated throughout the lessons to support students' learning
Key mathematical and academic vocabulary is highlighted at the start of each lesson, and is highlighted at the start of each
A glossary in the WorkSpace provides students with a reference for definitions.

ASSESSMENT AND DIFFERENTIATION
Ongoing assessment is built into the program to help teachers meet individual student needs.
During lessons, teachers observe students working in the whole group, with partners, and independently.

- Specific guidance for how to promote understanding and address student misconceptions is integrated into all lessons. - Suggestions for differentiating instruction are included after every "Assessing Student Understanding" lesson, both for students who need additional help and those who are ready for a challenge.

FROM MARILYN BURNS

Dear Colleague,

R Remainder of One begins this module. This book Reading aloud the story of Joe, a soldier bug who is part of the 25th Squadron. Joe loved to march with his squadron when they paraded to make didn't have proud. But when the 25 bugs in the troop lined up But the queen, who liked a partner and had to march by himself at the end Baside. He wasn't happy to things tidy, was not pleased and Joe had find himself labeled remainder of one!
The same problem arose when the squadron marched in threes and then in The same probs. Finally, when the troop organized in fives, Joe was included. The story fours. Fina and excellent review for writing division equations; recording and provides an exceltent rers; and reviewing the division vocabulary of dividend,
divisor, quotient, remainder, and divisible.

$$
\left.\right|_{\text {dividend divisor }} ^{25} \div 4=\left.\right|_{\text {quotient }} ^{6} \stackrel{R}{r e m a i n d e r ~}_{\mathrm{R} 1}^{2}
$$

$$
x \times x \times x x
$$

$x \quad x \times x \times x x$
$x x x x x x$
$x x x x x$
XXXXXX
25th Squadron marching in rows of 4
Students then investigate Joe's chances of marching in different formations Students then investigate Joe's chances of the 20th, 24th, 30th, 32nd, and if he jo
40th.

Following these experiences, students learn to play the game of Target 1000, which provides them practice
multiplying by multiples multiplying by multiples of 10 up to 100 , a skill that is essential for successfully solving division proble that with greater numbers. To play, students tak problems each time rolling a 1-6 number cudents take six turns, number that comes up by a multipe, multiplying the the scores for each turn.

1020304050 60 708090100
$4 \times 50=200 \quad$ Score
$4 \times 50=200$
$5 \times 60=300$
$1 \times 100=100$
500
600
Their goal is to get as close to 1000 as possible without going ove Also, students may use each multiple of 10 only once in their six tre.

66 The book A Remainder of One provides an excellent of One provides an excellent review for writing division
equations; recording and equations; recording and interpreting remainders; and reviewing the division vocabulary of dividend, divisor, quotient, remainder, and divisible. 95

In Lessons 1-5, students...
-Write related multipicaction
and division equations.
 -Calculate the quotients and remainders for two-digit divisors.
-Multiply one-digit numbers by multiples of 10 from 10
-Communicate ideas w key math vocabulary:
division equation, divide division equation, dividend,
divisor, quotient, remainder, and divisible.
\qquad

Write Division Equations

Target 1000

ve students complete the page.
(4) Students complete WorkSpace pages 6 and 7.

SUPPORTING INSTRUCTION The intent of these assignments is to teifforce for
students how thinking about muttiplication can be susefu for solving division problems. Limiting thes crobiems to divisisors of $2,3,4$, and 5 with dividend
up to 40 makes the numbers accessibh students' focus on using the connection between division and multiplication.

Assess
Use the annotated pages to correct WorkSpace
Use the annotated.
pages 11 and 12 .

Note the progress of each student in the appropriate
rows on the tracking chart found on page 142 of this Nows on the tracking chart found on page 142 of this guide.

Reevaluating Student Placement

As you review each student's work from these four
lessons and the assessment, you may suspect that lessons and the assessment, you may suspect that a student does not thave the foundations he or she
needs to be successful in this module. You can use the End-of-Module Assessment from Do The Math: Divivion B to find out if the student has the necessary prerequisite skills. If the student does
not score 80\% on this assessment, or struggles to complete it, he or she will need additional prerequisite concepts and skills.

Differentiating Instruction Although the lessons are carefully scaffolded and
paced at a rate more likely to give students a chance paced at a rate more likely to give students a chance
for optimal learning, there will be instances when for optimal learning, there will be instances when
students are still struggling and need extra support. Also, there will be instances when students would
benefit from additional challenges or practice. Try the benefit from additional
teaching ideas below.
For Students Who Need More Support

- If students have difificulty with dividing, provide additional
- If students have difificulty with dividing, provide add
support.
- Provide students with pennies or other counters.
- Have students arrange them in equal groups of $2,3,4$ - Have st
and 5.
- Guide students to write each division equation
- Play Leftovers with students to provide additional practice
dividing. 喑 dividing. (8)
- Game rules can be found in the Do The Math digital
resources. 道

For Students Ready for a Challenge

- Have students investigate squadrons of greater numbers, such as $45,50,60$, and 100 .
-Have students play Division Bingo. [0.0
- Students may play alone or with a partner.
- Game rues can be found in the Do The Math digital
resources.

-

$>$ Fill in the circle of the answer that best fits you.

1. I like math.

O not at all
O a little
O some, but it's not my favorite
O it's my favorite subject

2. I am good at math.

O not at all
O not very good
O fairly good
O very good
3. I need good math skills so I can get
a good job when I am older.
O agree a lot
O agree a little
O disagree a little
O disagree a lot be solved using different strategies.
O agree a lot
O agree a little
O disagree a little
O disagree a lot
Which of these do you agree with? You may choose more than one answer.
7. When math is challenging,

O take on the challenge.
O give up easily.
O put in a little effort.
O put in a lot of effort.
O ask my teacher for help.
> Write an answer to each question.
8. What do you like most about math? Explain.
4. I can get better in math if I work hard

O agree a lot
O agree a little
O disagree a little
O disagree a lot

5. I like solving different problems.

O agree a lot
O agree a little
O disagree a little
O disagree a lot

Write Division Equations

Students complete "Show What You Know" assignments every fifth understanding of the concepts and skills from the previous four lessons.

Show What You Know

DIRECTIONS
> Write a multiplication equation.
> Write the answer to the division problem.
> Answer the question.

18th Squadron

(1) Groups of 2	(2) Groups of 3
$18 \div 2=9$	$18 \div 3=6$
$9 \times 2=18$	$6 \times 3=18$
Is 18 divisible by 2? yes	Is 18 divisible by 3? yes
(3) Groups of 4	(4) Groups of 5
$18 \div 4=4 \mathrm{R} 2$	$18 \div 5=3 \mathrm{R} 3$
$4 \times 4=16$	$3 \times 5=15$
Is 18 divisible by 4? no	Is 18 divisible by 5? no

Show What You Know
DIRECTIONS
> Write the answer for each equation.

(1) $5 \times 60=300$	(2) $2 \times 100=200$
(3) $3 \times 20=60$	(4) $6 \times 80=480$
(5) $4 \times 90=360$	(6) $1 \times 40=40$
(7) $5 \times 70=350$	(8) $6 \times 70=420$

> Fill in the blanks

(9) $25 \div 8=3 \mathrm{R} 1$	(10) $16 \div 3=5 \mathrm{R} 1$
dividend 25	dividend 16
divisor 8	divisor 3
quotient 3	quotient 5
remainder $\quad \underline{1}$	remainder 1

(11)

UPDATE: Students listen to a reading of A Remainder of One, a book that presents situations that can be represented with division problems. Students solve division problems by writing the related multiplication

