Topic \quad Kinematics: Velocity	
Element Learning guide: Lesson 1 Skills:	- Understand that a particle's motion in spacetime can be described by position, distance, displacement, (average) speed, (average) velocity, and acceleration. - Interpret and calculate data using distance/displacement-time graphs. - Apply the equations for speed and velocity; solve linear equations.
Time	1 hour

1.

- Watch the video: Introduction to kinematics
- Complete the Skills check.
- Compare your answers with the solutions provided in the Mark Scheme.
- Note down any of the questions you answered incorrectly.

2.

- Read through the lesson material on Vector and scalar quantities, Vectors in one dimension, and Displacement and distance.
- Ask yourself whether you can:
- State the difference between scalars and vectors.
- Explain that, in one dimension, the direction characteristic is captured by $+/-$ signs.
- Apply Pythagoras's theorem.
- Complete Check your understanding questions 1 to 5 and check your answers.

3.

- Read through the lesson material on Velocity and speed
- Ask yourself whether you can:
- Understand how displacement is used in calculating velocity, whereas distance is used in calculating speed.
- Use the equations to solve for velocity/speed, displacement/distance, and time given any two of these quantities.
- Convert between kilometres per hour and metres per second.
- Complete Check your understanding questions 6 to 9 and check your answers.

4.

- Read through the lesson material on Distance-time graphs.
- Ask yourself whether you can:
- Compare gradients and know how to calculate them.
- Graph linear data and analyse its features.
- Complete Check your understanding questions 10 to 13 and check your answers.
- To finish this lesson ask yourself how one could determine whether a body is experiencing a change in velocity (accelerating).

Topic Kinematics: Acceleration	
Element Learning guide: Lesson 2 Skills:	- Understand that a particle's motion in spacetime can be described by position, distance, displacement, (average) speed, (average) velocity, and acceleration. - Interpret and calculate data using velocity-time graphs. - Apply speed/velocity/time equations; solve linear equations.
Time	1 hour

1.

- Watch the video Introduction to kinematics
- Think about how we use everyday words like 'acceleration' and 'deceleration'. Does the video use them the same way, or differently?
- Read through the lesson material on Acceleration.
- Ask yourself whether you can:
- Explain that acceleration is a vector quantity.
- Apply the change in velocity equation correctly, for example, that $10 \mathrm{~m} \mathrm{~s}^{-1}-\left(-5 \mathrm{~m} \mathrm{~s}^{-1}\right)=15 \mathrm{~m} \mathrm{~s}^{-1}$.
- Complete Check your understanding questions 1 and 2 and check your answers.

2.

- Read through the lesson material on Velocity-time graphs.
- Ask yourself whether you can:
- Explain why uniform acceleration produces linear velocity-time graphs.
- Complete Check your understanding questions 3 to 7 and check your answers.

3.

- Read through the lesson material on Area under a velocity-time graph.
- Ask yourself whether you can:
- Use basic geometry to calculate the area of rectangles and triangles.
- Use your calculator to find the square and square root of values.
- Complete Check your understanding questions 8 and 9 and check your answers.

Topic Kinematics: Measuring constant velocity	
Element	- Calculating the arithmetic mean.
Learning guide:	- Graphing linear, or linearised, date, including gradient, area, and intercepts.
Lesson 3 Skills:	- Graphing and using error bars.
Time	1 hour

1.

- Briefly, in two or three sentences, write down what you know about:
- How to graph data.
- How to include error bars on data values.
- How to draw a best fit line.
- Extension: how to draw a max/min line.

2.

- Read through the lesson material on Measuring constant velocity and Laboratory example: Constant velocity.
- Compare the information with what you wrote down earlier for the following skills:
- How to graph data.
- How to include error bars on data values.
- How to draw a best fit line.
- Extension: how to draw a max/min line.

3.

- Read through the instructions in Investigation: Measuring the acceleration due to gravity.
- Carry out the instructions and compare your findings to the provided solutions.

