Motion in One Dimension

against a horse if the length of the g !!e
course is right. When, and how, can a

man outrun a horse?

LOOKING AHEAD »

Uniform Motion Acceleration Free Fall

Successive images of the Segway rider are A cheetah is capable of running at very high When the diver jumps, his motion—both
the same distance apart, so his velocity is speeds but, more important, it is capable of a going up and coming down—is determined
constant. This is uniform motion. rapid change in speed—a large acceleration. by gravity alone. We call this free fall.
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You'll learn to describe motion in terms of You’ll use the concept of acceleration to solve How long will it take this diver to reach the
quantities such as distance and velocity, an problems of changing velocity, such as races water? This is the type of free-fall problem
important first step in analyzing motion. or predators chasing prey. you’ll learn to solve.

m To describe and analyze motion along a line.

LOOKING BACK « |

Motion Diagrams
STOP TO THINK

As you saw in Section 1.6, a good first step in analyzing motion is to draw

a motion diagram, marking the position of an object at successive times. A bicycle is moving to the left with increasing speed. Which
of the following motion diagrams illustrates this motion?
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In this chapter, you'll learn to create motion diagrams for different types of C o

motion along a line. Drawing pictures like this is a good starting point for
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solving problems. 2




2.1 Describing Motion

In this chapter, we’ll focus on how to describe motion using several different repre-
sentations, including motion diagrams, graphs, and mathematical equations. We will
defer a treatment of why objects move as they do until Chapter 4. The branch of
physics that deals with the description of motion is kinematics, from the Greek
word kinema, meaning “movement.” You know this word through its English varia-
tion cinema—motion pictures!

Representing Position

As we saw in Chapter 1, kinematic variables such as position and velocity are mea-
sured with respect to a coordinate system, an axis that you impose on a system. We
will use an x-axis to analyze both horizontal motion and motion on a ramp; a y-axis
will be used for vertical motion. We will adopt the convention that the positive end
of an x-axis is to the right and the positive end of a y-axis is up. This convention is
illustrated in FIGURE 2.1.

» The conventions illustrated in Figure 2.1 aren’t absolute. In most cases,
we are free to define the coordinate system, and doing so in this standardized way
makes sense. In some cases, though, we’ll want to make a different choice. «

Now, let’s look at a practical problem. FIGURE 2.2 is @ motion diagram of a straight-
forward situation, a student walking to school. She is moving horizontally, so we use
the variable x to describe her motion. We have set the origin of the coordinate sys-
tem, x = 0, at her starting position, and we measure her position in meters. We have
included velocity vectors connecting successive positions on the motion diagram, as
we saw we could do in Chapter 1.

FIGURE 2.2 The motion diagram of a student walking to school and a coordinate axis for
making measurements.
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The motion diagram shows that she leaves home at a time we choose to call
t = 0 min, and then makes steady progress for a while. Beginning at # = 3 min there
is a period in which the distance traveled during each time interval becomes
shorter—perhaps she slowed down to speak with a friend. Then, at = 6 min, the
distances traveled within each interval are longer—perhaps, realizing she is running
late, she begins walking more quickly.

Every dot in the motion diagram of Figure 2.2 represents the student’s position at
a particular time. For example, the student is at position x = 120 m at =2 min.
TABLE 2.1 lists her position for every point in the motion diagram.

The motion diagram of Figure 2.2 is one way to represent the student’s motion.
Presenting the data as in Table 2.1 is a second way to represent this motion. A third
way to represent the motion is to use the data to make a graph. FIGURE 2.3 is a graph of
the positions of the student at different times; we say it is a graph of x versus ¢ for the
student.

» A graph of “a versus b” means that a is graphed on the vertical axis and b
on the horizontal axis. We say that such a graph represents a “as a function of” b. «

We can flesh out the graph of Figure 2.3, though. We can assume that the student
moved continuously through all intervening points of space, so we can represent her
motion as a continuous curve that passes through the measured points, as shown in
FIGURE 2.4. Such a continuous curve that shows an object’s position as a function of
time is called a position-versus-time graph or, sometimes, just a position graph.
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FIGURE 2.1 Sign conventions for
position.
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TABLE 2.1 Measured positions of a
student walking to school

Time Position Time  Position
t (min) x(m) ¢t(min) x(m)
0 0 5 220
1 60 6 240
2 120 7 340
3 180 8 440
4 200 9 540

FIGURE 2.3 A graph of the student’s
motion.

The dots show the student’s
x (m) positions at all times in the table.
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FIGURE 2.4 Extending the graph of Figure
2.3 to a position-versus-time graph.
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Time is graphed on
the horizontal axis.

Position is graphed
on the vertical axis.
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» A graph is not a “picture” of the motion. The student is walking along a
straight line, but the graph itself is not a straight line. Further, we’ve graphed her
position on the vertical axis even though her motion is horizontal. A graph is an
abstract representation of motion. <

Interpreting a car’s position-versus-time graph

The graph in FIGURE 2.5 represents the motion of a car along a
straight road. Describe (in words) the motion of the car.

FIGURE 2.5 Position-versus-time graph for the car.
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REASON The vertical axis in Figure 2.5 is labeled “x (km),”
so the car’s position is measured in kilometers. Our conven-
tion for motion along the x-axis given in Figure 2.1 tells us that
x increases as the car moves to the right and x decreases as the
car moves to the left. As FIGURE 2.6 explains in detail, the graph
thus shows that the car travels to the left for 30 minutes, stops for
10 minutes, then travels to the right for 40 minutes. It ends up
10 km to the left of where it began.

FIGURE 2.6 Looking at the position-versus-time graph in detail.

1. Atz = 0 min, the
car is 10 km to the
right of the origin.

x(km)}
204

2. The value of x decreases for
30 min, indicating that the car
is moving to the left.

5. The car reaches the

10 1 origin at r = 80 min.
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4. Slzirling at t = 40 min, the
value of x starts increasing,
indicating that the car is
moving to the right.

3. For 10 min the car’s
position remains unchanged
at 20 km to the left of the
origin. The car is stopped.

ASSESS The car travels to the left for 30 minutes and to the right
for 40 minutes. Nonetheless, it ends up to the left of where it started.
This means that the car was moving faster when it was moving to
the left than when it was moving to the right. We can deduce this
fact from the graph as well, as we will see in the next section.

FIGURE 2.7 Sign conventions for velocity.
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Representing Velocity

Velocity is a vector, having both a magnitude and a direction. When we draw a gen-
eral velocity vector on a diagram, we use an arrow labeled with the symbol ¥.

For motion in one dimension, however, velocity vectors are restricted to point
only forward or backward for horizontal motion, or up or down for vertical motion.
This restriction lets us simplify our notation for velocity vectors in one dimension.
When we solve problems for motion along an x-axis, we represent the velocity with
the simple variable v,. As FIGURE 2.7 shows, we adopt the convention that for an object
moving to the right, v, is positive, whereas for motion to the left, v, is negative.

For vertical motion along the y-axis, we use the symbol v, to represent the veloc-
ity. The sign conventions for this vertical motion are also shown in Figure 2.7.

We use the symbol v, with no subscript, to represent the speed of an object. Speed
is the magnitude of the velocity vector and is thus always positive.

In Chapter 1 we defined an object’s velocity as Ax/At, where Ax = x; — x; is the
displacement, or change in position, as the object moves from an initial position x; to
a final position x, and At is the interval of time during which the motion occurs. For
motion along a horizontal line, we can write

A
YA

This agrees with the sign conventions in Figure 2.7. If Ax is positive, x is increasing,
the object is moving to the right, and Equation 2.1 gives a positive value for velocity.
If Ax is negative, x is decreasing, the object is moving to the left, and Equation 2.1
gives a negative value for velocity.

Equation 2.1 is the first of many kinematic equations we’ll see in this chapter.
We’ll often specify equations in terms of the coordinate x, but if the motion is

2.1



vertical, in which case we use the coordinate y, the equations can be easily adapted.
For example, Equation 2.1 for motion along a vertical axis becomes

Ay
Vy = E (2.2)

From Position to Velocity

How is an object’s velocity related to its position-versus-time graph? To find out,
let’s take another look at the motion diagram of the student walking to school. As we
see in FIGURE 2.8, where we have repeated the motion diagram of Figure 2.2, her
motion has three clearly defined phases. In each phase her speed is constant (because
the velocity vectors have the same length) but the speed varies from phase to phase.

FIGURE 2.8 Revisiting the motion diagram of the student walking to school.
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Throughout the motion, she moves toward the right, in the
direction of increasing x. Her velocity is always positive.

Just as her motion has three different phases, her position-versus-time graph
(redrawn in FIGURE 2.9a) has three clearly defined segments with three different
slopes. We can see that there’s a relationship between her speed and the slope of the
graph: A faster speed corresponds to a steeper slope.

The correspondence is actually deeper than this. Let’s look at the slope of the
third segment of the position-versus-time graph, as shown in FIGURE 2.9b. The slope of
a graph is defined as the ratio of the “rise,” the vertical change, to the “run,” the hori-
zontal change. For the segment of the graph shown, the slope is

) ¢ h— rise  Ax
slope of graph = "=~
This ratio has a physical meaning—it’s the velocity, exactly as we defined it in Equa-
tion 2.1. We’ve shown this correspondence for one particular graph, but it is a general
principle: The slope of an object’s position-versus-time graph is the object’s veloc-
ity at that point in the motion. This principle also holds for negative slopes, which
correspond to negative velocities. We can associate the slope of a position-versus-
time graph, a geometrical quantity, with velocity, a physical quantity.

TACTICS

Box 2.1 Interpreting position-versus-time graphs

Information about motion can be obtained from position-versus-time graphs as
follows:

© Determine an object’s position at time ¢ by reading the graph at that instant
of time.

® Determine the object’s velocity at time ¢ by finding the slope of the position
graph at that point. Steeper slopes correspond to faster speeds.

® Determine the direction of motion by noting the sign of the slope. Positive
slopes correspond to positive velocities and, hence, to motion to the right
(or up). Negative slopes correspond to negative velocities and, hence, to
motion to the left (or down).

Exercises 3,4
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FIGURE 2.9 Interpreting the slope of the
position graph for the student walking to
school.
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x (m) slope of the graph
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FIGURE 2.10 Deducing the velocity-
versus-time graph from the position-
versus-time graph.
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» The slope is a ratio of intervals, Ax/At, not a ratio of coordinates; that
is, the slope is not simply x/t. «

» We are distinguishing between the actual slope—the slope on the graph—
and the physically meaningful slope. If you were to use a ruler to measure the rise
and the run of the graph, you could compute the actual slope of the line as drawn
on the page. That is not the slope we are referring to when we equate the velocity
with the slope of the line. Instead, we find the physically meaningful slope by mea-
suring the rise and run using the scales along the axes. The “rise” Ax is some num-
ber of meters; the “run” Az is some number of seconds. The physically meaningful
rise and run include units, and the ratio of these units gives the units of the slope. «

We can now use the approach of Tactics Box 2.1 to analyze the student’s
position-versus-time graph, redrawn in FIGURE 2.10a. We can determine her velocity
during the first phase of her motion by measuring the slope of the line:

Ax  180m m

= slope = X = =60 x
Y S OPe A T 30 min '

1 min
=1.0m/s
S

min 6

In completing this calculation, we’ve converted to more usual units for speed, m/s.
During this phase of the motion, her velocity is constant, so a graph of velocity ver-
sus time appears as a horizontal line at 1.0 m/s, as shown in FIGURE 2.10b. We can do
similar calculations to show that her velocity during the second phase of her motion
is +0.33 m/s, and then increases to +1.7 m/s during the final phase. We combine
this information to create the velocity-versus-time graph shown in Figure 2.10b.

An inspection of the velocity-versus-time graph shows that it matches our under-
standing of the student’s motion: There are three phases of the motion, each with
constant speed. In each phase, the velocity is positive because she is always moving
to the right. The second phase is slow (low velocity) and the third phase is fast (high
velocity). All of this can be clearly seen on the velocity-versus-time graph, which is
yet another way to represent her motion.

» The velocity-versus-time graph in Figure 2.10b includes vertical seg-
ments in which the velocity changes instantaneously. Such rapid changes are an
idealization; it actually takes at least a small amount of time to change velocity. «

Finding a car’s velocity graph from its position graph

FIGURE 2.11 gives the position-versus-time graph of a car.

a. Draw the car’s velocity-versus-time graph.

b. Describe the car’s motion in words.

FIGURE 2.11 The position-versus-time graph of a car.

PREPARE Figure 2.11 is a graphical representation of the
motion. The car’s position-versus-time graph is a sequence of
three straight lines. Each of these straight lines represents uni-
form motion at a constant velocity. We can determine the car’s
velocity during each interval of time by measuring the slope of

the line.
x (m)
64 SOLVE
1 a. Fromt=0stor=2s (Ar=2s) the car’s displacement
41 is Ax=—4m—0m=—4m. The velocity during this
2 interval is
0' © Ax —4m 2 m/
T T T T — vy =—= = —2m/s
i 1 2 3 6 i * At 2s
_2: The car’s position does not change fromr=2stotr=4s
4 (Ax=0m), so v,=0m/s. Finally, the displacement

STRATEGIZE We will use the steps from Tactics Box 2.1 to
understand the car’s motion and to draw its velocity-versus-time

graph based on its position graph.

between t=4s and t=6s (Ar=2s) is Ax=10m.
Thus the velocity during this interval is

10 m

V= —

T =5m/s



These velocities are represented graphically in FIGURE 2.12.

FIGURE 2.12 The velocity-versus-time graph for the car.
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b. The velocity-versus-time graph of Figure 2.12 shows the
motion in a way that we can describe in a straightforward
manner: The car backs up for 2 s at 2 m/s, sits at rest for 2 s,

v, (m/s) then drives forward at 5 m/s for 2 s.
6 Value = 5 m/s . . o
] N ASSESS Notice that the velocity graph and the position graph
44 ! look completely different. They should! The value of the veloc-
3 2 ity graph at any instant of time equals the slope of the position
21 Value =0m/s ' graph. Since the position graph is made up of segments of con-
0 \ 1 £(s) stant slope, the velocity graph should be made up of segments of
i 1 2| 3 4 5 6 constant value, as it is. This gives us confidence that the graph
D we have drawn is correct.
Value = —2 m/s

From Velocity to Position

We’ve now seen how to move between different representations of uniform motion.
There’s one last issue to address: If you have a graph of velocity versus time, how
can you determine the position graph?

Suppose you leave a lecture hall and begin walking toward your next class, which
is down the hall to the east. You then realize that you left your textbook at your seat.
You turn around and run back to the lecture hall to retrieve it. A velocity-versus-time
graph for this motion appears in FIGURE 2.13a. There are two clear phases to the
motion: walking away from the lecture hall (velocity +1.0 m/s) and running back
(velocity —3.0 m/s). How can we deduce your position-versus-time graph?

As before, we can analyze the graph segment by segment, as shown in Figure 2.13.
For the first segment, the velocity graph in Figure 2.13a indicates motion with a con-
stant velocity of +1.0 m/s. This tells us that the corresponding position graph must
be a straight line with a positive slope of +1.0 m/s, as shown in the position graph of
FIGURE 2.13b. For the second segment, where the velocity is —3.0 m/s, as in Figure
2.13a, the position graph must be a line with a negative slope of —3.0 m/s, also
shown in the position graph of Figure 2.13b.

The position graph makes sense: It shows 15 seconds of slowly increasing posi-
tion (walking away from the lecture hall) and then 5 seconds of rapidly decreasing
position (running back). And you end up back where you started.

There’s one important detail that we didn’t talk about in the preceding paragraph:
How did we know that the position graph started at x = 0 m? The velocity graph
tells us the slope of the position graph, but it doesn’t tell us where the position graph
should start. Although you’re free to select any point you choose as the origin of the
coordinate system, here it seems reasonable to set x = 0 m at your starting point in
the lecture hall; as you walk away, your position increases.

FIGURE 2.13 Deducing a position graph
from a velocity-versus-time graph.
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2.2 Uniform Motion

If you drive your car on a straight road at a perfectly steady 60 miles per hour (mph),
you will cover 60 mi during the first hour, another 60 mi during the second hour, yet
another 60 mi during the third hour, and so on. This is an example of what we call
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FIGURE 2.14 Motion diagram and
position-versus-time graph for uniform
motion.
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FIGURE 2.15 Position-versus-time graph
for an object in uniform motion.
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uniform motion. Straight-line motion in which equal displacements occur during
any successive equal-time intervals is called uniform motion or constant-
velocity motion.

» The qualifier “any” is important. If for each successive hour of a trip
you drive 120 mph for 30 min and stop for 30 min, you will cover 60 mi during
each successive 1 hour interval. But you will not have equal displacements during
successive 30 min intervals, so this motion is not uniform. <«

FIGURE 2.14 shows a motion diagram and a position-versus-time graph for an object
in uniform motion. Notice that the position-versus-time graph for uniform motion is
a straight line. This follows from the requirement that all values of the displacement
Ax corresponding to the same time interval Az be equal. In fact, an alternative defi-
nition of uniform motion is: An object’s motion is uniform if and only if its
position-versus-time graph is a straight line.

Equations of Uniform Motion

We’ve just learned that an object in uniform motion along the x-axis will have a lin-
ear (straight-line) position-versus-time graph like the one shown in FIGURE 2.15. Recall
from Chapter 1 that we denote the object’s initial position as x; at time #;. The term
“initial” refers to the starting point of our analysis or the starting point in a problem.
The object may or may not have been in motion prior to #;. We use the term “final”
for the ending point of our analysis or the ending point of a problem, and denote the
object’s final position x; at the time f;. As we’ve seen, the object’s velocity v, along
the x-axis can be determined by finding the slope of the graph:
_rise  Ax  xp— X

run Ar tr— K

1

(2.3)

Vy

Here, the displacement Ax = x; — x; is the change in position that occurs during the
time interval Ar = f; — t;. Equation 2.3 can be rearranged to give

Xg=x; + v, At 2.4)

Position equation for an object in uniform motion (v, is constant)

where At is the interval of time in which the object moves from position x; to posi-
tion x;. Equation 2.4 applies to any time interval Az during which the velocity is
constant. We can also write this in terms of the object’s displacement Ax:

Ax=v, At 2.5)

The velocity of an object in uniform motion tells us the amount by which its position
changes during each second. An object with a velocity of 20 m/s changes its position
by 20 m during every second of motion: by 20 m during the first second of its motion,
by another 20 m during the next second, and so on. We say that position is changing at
the rate of 20 m/s. If the object starts at x; = 10 m, it will be at x = 30 m after 1 s of
motion and at x = 50 m after 2 s of motion. Thinking of velocity like this will help you
develop an intuitive understanding of the connection between velocity and position.

Mathematical Relationships

Physics may seem densely populated with equations, but most equations follow a
few basic forms. FIGURE 2.16 shows three graphs: a mathematical equation, the kinetic
energy of a moving object versus its speed, and the potential energy of a spring ver-
sus how far the spring is compressed.

All of these graphs have the same overall appearance. The three expressions dif-
fer in their variables, but all three equations have the same mathematical



FIGURE 2.16 Three graphs with the same mathematical relationship.
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relationship. We’ll use only a handful of different mathematical relationships in this
text. As we meet each relationship for the first time, we will give an overview of its
most important properties. When you see the relationship again in a new equation,
we’ll insert an icon, such as [, that refers back to the overview so that you can

remind yourself of the key details.

For instance, the mathematical form of Equation 2.5 is a type that we will see
often: The displacement Ax is proportional to the time interval Az. The following

proportional relationships overview gives the details.

|4 Proportional relationships

We say that y is proportional to x if y

. y=Cx
they are related by an equation of the 4~ ___________ Z
form Y
y= Cx 9 | When we
! double x,
y is proportional to x 201 ----3 . i ydoubles
| | ! as well.
We call C the proportionality constant. : X
A graph of y versus x is a straight line 0 S é 5 i x

that passes through the origin.

scALING If x has the initial value x|, then y has the initial value y; = Cx;.
Changing x from x; to x, changes y from y; to y,. The ratio of y, to y; is

»_0Cn_x
i Cx; X

The ratio of y, to y; is exactly the same as the ratio of x, to x,. If y is propor-
tional to x, which is often written y o< x, then x and y change by the same

factor:

If you double x, you double y.

If you decrease x by a factor of 3, you decrease y by a factor of 3.

If two variables have a proportional relationship, we can draw important con-
clusions from ratios without knowing the value of the proportionality constant
C. We can often solve problems in a very straightforward manner by looking
at such ratios. This is an important skill called ratio reasoning.

If a train leaves Cleveland at 2:00 ...

A train is moving due west at a constant speed. A passenger notes
that it takes 10 minutes to travel 12 km. How long will it take the
train to travel 60 km?

STRATEGIZE For an object in uniform motion, Equation 2.5
shows that the distance traveled Ax is proportional to the time inter-
val At, so this is a good problem to solve using ratio reasoning.

Exercise 11

PREPARE We are comparing two cases: the time A#; = 10 min
it takes to travel the distance Ax; = 12 km, and the (unknown)
time At, it will take to travel Ax, = 60 km. Ratio reasoning tells
us that Ax,/Ax; = At,/At,.

Continued

39
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SOLVE The ratio of the distances is

ﬂ_GOkm_
Ax; 12km

This is equal to the ratio of the times:

Alz _ AI2 _ AX2 —5

Af,  10min  Ax,

It takes 10 minutes to travel 12 km, so it will take 50 minutes—
5 times as long—to travel 60 km.

ASSESS For an object in steady motion, it makes sense that
5 times the distance requires 5 times the time. We can see that
using ratio reasoning is a straightforward way to solve this prob-
lem. We don’t need to know the proportionality constant (in this
case, the velocity); we just used ratios of distances and times.

Aty =5 X (10 min) = 50 min

FIGURE 2.17 Displacement is the area
under a velocity-versus-time graph.
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constant at 12 m/s.
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A Second Way to Find Position from Velocity

Earlier, we saw that we could deduce an object’s position graph from its velocity
graph by drawing a position graph in which the slopes everywhere matched the
velocity graph. But there’s another way to understand the relationship between
velocity and position graphs—by looking at what we call the area under the graph.
Let’s look at an example.

Suppose a car is in uniform motion at 12 m/s. How far does it travel—that is,
what is its displacement—during the time interval between t = 1.0 s and t = 3.0 s?

Equation 2.5, Ax =v, At, describes the displacement mathematically; for a
graphical interpretation, consider the graph of velocity versus time in FIGURE 2.17. In
the figure, we’ve shaded a rectangle whose height is the velocity v, and whose base
is the time interval Az. The area of this rectangle is v, Ar. Looking at Equation 2.5,
we see that the quantity is also equal to the displacement of the car. The area of this
rectangle is the area between the axis and the line representing the velocity; we call
it the “area under the graph.” We see that the displacement Ax is equal to the area
under the velocity graph during interval A+

Whether we use Equation 2.5 or the area under the graph to compute the dis-
placement, we get the same result:

Ax=v, Ar=(12m/s) (2.0s) =24 m
Although we’ve shown that the displacement is the area under the graph only for

uniform motion, where the velocity is constant, we’ll soon see that this result applies
to any one-dimensional motion.

» Wait a minute! The displacement Ax = x; — x; is a length. How can a
length equal an area? Recall that earlier, when we found that the velocity is the
slope of the position graph, we made a distinction between the actual slope and
the physically meaningful slope? The same distinction applies here. The velocity
graph does indeed bound a certain area on the page. That is the actual area—say,
in square inches of paper—but it is not the area to which we are referring. Once
again, we need to measure the quantities we are using, v, and A¢, by referring to
the scales on the axes. Az is some number of seconds, while v, is some number of
meters per second. When these are multiplied, the physically meaningful area has
units of meters, appropriate for a displacement. <

Four objects move with the velocity-versus-time graphs shown.
Which object has the largest displacement between r = 0s and r = 2 s?

v (m/s) v, (m/s) Vi (m/s) Ve (/)
2 o E— 2 2

1

1 14 1 1 1
1

1
0———+1(s) 0+———+1(s) 0+——F—1(8) O+—T—T1()
o 1 2 o 1 2 0o 1 2 o 1 2
A. B. C. D.




2.3 Instantaneous Velocity

The objects we’ve studied so far have moved with a constant, unchanging velocity
or, like the car in Example 2.1, have a velocity that changes abruptly from one con-
stant value to another. This is not very realistic. Real moving objects speed up and
slow down, with their velocity changing smoothly. Suppose you’re sitting at a red
light at the start of a freeway ramp. When the light turns green, you increase your
speed steadily from 0 mph to 60 mph until you merge onto the freeway.

Perhaps as you speed down the ramp you glance at your speedometer and notice
that, at that specific instant, it reads 40 mph. The speedometer indicates how fast
you’re moving at a particular instant in time. An object’s velocity—its speed and
direction—at a specific instant of time ¢ is called the object’s instantaneous
velocity.

But what does it mean to have a velocity “at an instant”? An instantaneous veloc-
ity with a speed of 40 mph means that the rate at which your car’s position is chang-
ing—at that exact instant—is such that it would travel a distance of 40 miles in
1 hour if it continued at that rate without change. If you speed up to pass a car that is
traveling at a steady 40 mph, then at the very moment that your instantaneous veloc-
ity is 40 mph, your speed will match that of the other car—but an instant later, you’ll
be moving faster than 40 mph.

The velocity we introduced in Section 1.4 is really the average velocity; it is the
velocity averaged over a finite time interval, such as 1 s or 1 min. From now on,
though, the word “velocity” will always mean instantaneous velocity—the
velocity at a single instant of time.

For uniform motion, an object’s position-versus-time graph is a straight line and
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A car’s speed increases smoothly as it
enters the freeway.

FIGURE 2.18 Position-versus-time graph
for a car entering a freeway.

The displacement in later
time intervals is greater;

the object’s velocity is the slope of that line. In contrast, FIGURE 2.18 shows that the x(m)  the velocity is increasing.
position-versus-time graph for a car entering a freeway is a curved line. The dis- 160 ) H
1 t Ax duri I intervals of time gets greater as th ds up. E o In carly time
placement Ax during equal intervals of time gets greater as the car speeds up. Even ) 75,0 the L
so, we can use the slope of the position graph to measure the car’s velocity. We can _| displacement 73
say that 30 is small; the
| velocity is -,
instantaneous velocity v, at time ¢ = slope of position graph at time ¢ (2.6) 40 - small as well. 3
But how do we determine the slope of a curved line at a particular point? The fol- 0 .‘ﬁk‘ : : )
lowing table shows how. 0 2 4 6 8 10
Finding the instantaneous velocity
x (m) x (m)
160 160
120 120 .
Ny Ax=30m b e
80 1 80 -
B Ar=0.20s b Ar—40 48
i - 1=4.0s
40 ] 40 i Ax=60m
0 T T T T r1(s) 0 — T f T ri(s)

0 2 4 6 8 10

If the velocity changes, the position graph is
a curved line. But we can compute a slope
at a point by considering a small segment
of the graph. Let’s look at the motion in

a very small time interval right around

t = 4.0 s. This is highlighted with a circle,
and we show a closeup in the next graph at
the right.

In this magnified segment of the position
graph, the curve isn’t apparent. It appears to
be a line segment. We can find the slope by
calculating the rise over the run, just as before:

ve=(3.0m)/(0.20s) = 15 m/s

This is the slope at # = 4.0 s and thus the
velocity at this instant of time.

0 2 4 6 8 10

Graphically, the slope of the curve at a point is
the same as the slope of a straight line drawn
tangent to the curve at that point. Calculating
rise over run for the tangent line, we get

v, = (60m)/(4.0s)=15m/s
This is the same value we obtained from the
close-up view. The slope of the tangent

line is the instantaneous velocity at that
instant of time.
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Analyzing a hockey player's position graph

A hockey player moves in a straight line along the length of the
ice in a game. We measure position from the center of the rink.
FIGURE 2.19 shows a position-versus-time graph for his motion.

a. Sketch an approximate velocity-versus-time graph.
b. At which point or points is the player moving the fastest?
c. Is the player ever at rest? If so, at which point or points?

FIGURE 2.19 The position-versus-time graph for a hockey
player.

REASON a. The velocity at a particular instant of time is the
slope of the tangent line to the position-versus-time graph at that
time. We can move point-by-point along the position-versus-time
graph, noting the slope of the tangent at each point to find the
velocity at that point.

Initially, to the left of point A, the slope is negative and thus
the velocity is negative (i.e., the player is moving to the left). But
the slope decreases as the curve flattens out, and by the time the
graph gets to point A, the slope is zero. The slope then increases
to a maximum value at point B, decreases back to zero a little
before point C, and remains at zero thereafter. This reasoning
process is outlined in FIGURE 2.20a, and FIGURE 2.20b shows the
approximate velocity-versus-time graph that results.

The other questions were answered during the construction of
the graph:

b. The player moves the fastest at point B where the slope of
the position graph is the steepest.

c. If the player is at rest, v, = 0. Graphically, this occurs at
points where the line tangent to the position-versus-time

FIGURE 2.20 Finding a velocity graph from a position graph.

The slope is maximum
at B. This is the point
of maximum velocity.

@

t

The slope is zero at A and C,
so the velocity is zero.
. The player is at rest.

The sibpe is negative
before A, so v, <0.

(b) v,

B

graph is horizontal and thus has zero slope. Figure 2.20 shows
that the slope is zero at point A and for a small range of times
near point C. At point A, the velocity is only instantaneously
zero—the player is reversing direction, changing from mov-
ing to the left to moving to the right. Near point C, he has
stopped moving and stays at rest.

ASSESS The best way to check our work is to look at differ-
ent segments of the motion and see if the velocity and position
graphs match. Until point A, x is decreasing. The player is mov-
ing to the left, so the velocity should be negative, which our
graph shows. Between points A and C, x is increasing, so the
velocity should be positive, which is also a feature of our graph.
The steepest slope is at point B, so this should be the high point
of our velocity graph, as it is.

FIGURE 2.21 Velocity-versus-time graph
for a lion pursuing prey.

The lion speeds up for
v, a while, then reaches

a s{cady speed. The area

under the
_displacement
" graph.

FIGURE 2.21 shows a velocity-versus-time graph for a lion speeding up to pursue
prey. Even though the speed varies, we can still use the graph to determine how far
the lion moves during the time interval f; to #;. For uniform motion we showed that
the displacement Ax is the area under the velocity-versus-time graph during the time
interval. But there was nothing special about the type of motion: We can generalize
this idea to the case of an object whose velocity varies. If we draw a velocity graph
for the motion, the object’s displacement is given by

x¢ — x; = area under the velocity graph between t; and #; (2.7)

The area under the graph in Figure 2.21 tells us how far the lion ran during this seg-
ment of the chase.

In many cases, as in the next example, the area under the graph is a simple shape
whose area we can easily compute. If the shape is complex, however, we can approx-
imate the area using a number of simpler shapes that closely match it.
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Calculating the displacement of a car during a rapid start

FIGURE 2.22 shows the velocity-versus-time graph of a car pulling
away from a stop. How far does the car move during the first 3.0 s?
STRATEGIZE The question How far? indicates that we need to find
a displacement Ax rather than a position x. Graphically, the displace-
ment is given by the area under the velocity-versus-time graph.
PREPARE In Figure 2.22 we have shaded the area we need to
find. It is the area between the straight line of the velocity graph
and the #-axis, between #; = 0 s and #; = 3.0 s.

FIGURE 2.22 Velocity-versus-time graph for the car of
Example 2.5.

% /S) o elocity i steadily

SOLVE The graph in this case is an angled line, so the area is that
of a triangle:

Ax = area of triangle between f =0s and t = 3.0 s

=1 X base X height =1 X 3.0s X 12m/s =18 m

The car moves 18 m during the first 3 seconds as its velocity
changes from O to 12 m/s.

AsSESS The physically meaningful area is a product of a time
in s and a velocity in m/s, so Ax has the proper units of m. Let’s
check the numbers to see if they make physical sense. The final
velocity, 12 m/s, is about 25 mph. Pulling away from a stop, you

1o increasing. might expect to reach this speed in about 3 s—at least if you have
12 a reasonably sporty vehicle! Another check is to realize that if
o The displacement the car had moved at a constant 12 m/s (the final velocity) during

8 ~Axis the area of the these 3 s, the distance would be 36 m. The actual distance trav-
shaded triangle.

4 & eled during the 3 s is 18 m—half of 36 m. This makes sense, as
0 ) the velocity was O m/s at the start of the problem and increased
0 1 2 4 steadily to 12 m/s.

SRR IR Which velocity-versus-time graph goes

versus-time graph on the left?

with the position-

B Ve Ve Ve Ve

S

2.4 Acceleration

The goal of this chapter is to describe motion. We’ve seen that velocity describes the
rate at which an object changes position. We need one more motion concept to
complete the description, one that will describe an object whose velocity is
changing.

As an example, let’s look at a frequently quoted measurement of car perfor-
mance, the time it takes the car to go from 0 to 60 mph. TABLE 2.2 shows this time for

TABLE 2.2 Performance data for vehicles

Time to go from

two different cars, a sporty Corvette and a compact Sonic with a much more modest ~ Vehicle 0 to 60 mph
engine. o o 2016 Chevy Corvette 3.6
Let’s look at motion diagrams for the Corvette and the Sonic in FIGURE 2.23. We 2016 Chevy Sonic 905

can see two important facts about the motion. First, the lengths of the velocity
vectors are increasing, showing that the speeds are increasing. Second, the velocity
vectors for the Corvette are increasing in length more rapidly than those of the
Sonic. The quantity we seek is one that measures how rapidly an object’s velocity
vectors change in length.

When we wanted to measure changes in position, the ratio Ax/ Az was useful. This
ratio, which we defined as the velocity, is the rate of change of position. Similarly, we

FIGURE 2.23 Motion diagrams for the Corvette and Sonic.

Sonic @@=l @il @

Corvette @ »>-o

\
®

e
@
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Cushion kinematics When a car hits an
obstacle head-on, the damage to the car and
its occupants can be reduced by making the
acceleration as small as possible. As we can
see from Equation 2.8, acceleration can be
reduced by making the time for a change

in velocity as long as possible. This is the
purpose of the yellow crash cushion barrels
you may have seen in work zones on high-
ways—to lengthen the time of a collision
with a barrier.

can measure how rapidly an object’s velocity changes with the ratio Av,/Ar. Given
our experience with velocity, we can say a couple of things about this new ratio:

= The ratio Av,/At is the rate of change of velocity.
= The ratio Av,/At is the slope of a velocity-versus-time graph.

We will define this ratio as the acceleration, for which we use the symbol a,:

_ﬂ 2.8)
9T Ay @

Definition of acceleration as the rate of change of velocity

Similarly, a, = Av,/ At for vertical motion.

As an example, let’s calculate the acceleration for the Corvette and the Sonic. For
both, the initial velocity (v,); is zero and the final velocity (v,); is 60 mph. Thus the
change in velocity is Ay, = 60 mph. In m/s, our ST unit of velocity, Av, =27 m/s.

Now we can use Equation 2.8 to compute the acceleration. Let’s start with the
Corvette, which speeds up to 27 m/s in A =3.6s:

Av,  27m/s m/s
ACorvette x — Al‘: 365 = /. T

Here’s the meaning of this final figure: Every second, the Corvette’s velocity
changes by 7.5 m/s. In the first second of motion, the Corvette’s velocity increases
by 7.5 m/s; in the next second, it increases by another 7.5 m/s, and so on. Thus after
1 second, the velocity is 7.5 m/s; after 2 seconds, it is 15 m/s. We thus interpret the
units as 7.5 meters per second, per second—7.5 (m/s)/s.

The Sonic’s acceleration is

Av, 27m/s _

o m/s
ASonic x — At -

9.0s s

In each second, the Sonic changes its speed by 3.0 m/s. This is only 2/5 the accelera-
tion of the Corvette! The reason the Corvette is capable of greater acceleration has to
do with what causes the motion. We will explore the reasons for acceleration in
Chapter 4. For now, we will simply note that the Corvette is capable of much greater
acceleration, something you would have suspected.

» It is customary to abbreviate the acceleration units (m/s)/s as m/ s2,
which we say as “meters per second squared.” For example, the Sonic has an
acceleration of 3.0 m/s>. When you use this notation, keep in mind its meaning as
“(meters per second) per second.” «

Animal acceleration @

Lions, like most predators, are capable of very rapid starts. From
rest, a lion can sustain an acceleration of 9.5 m/s> for up to one
second. How much time does it take a lion to go from rest to a
typical recreational runner’s top speed of 10 mph?

STRATEGIZE The lion’s speed increases by 9.5m/s’> each
second. Once we know the runner’s speed in m/s, we will calcu-
late the time it would take for the lion to reach that speed.
PREPARE We start by converting to SI units. The speed the lion
must reach is

0.45 m/s

=4,
Lomph M/

ve = 10 mph X

The lion can accelerate at 9.5 m/s?, changing its speed by 9.5 m/s
per second, for only 1.0 s—long enough to reach 9.5 m/s. It will
take the lion less than 1.0 s to reach 4.5 m/s, so we can use
a, = 9.5 m/s? in our solution.

SOLVE We know the acceleration and the desired change in
velocity, so we can rearrange Equation 2.8 to find the time:

Are Av,  45m/s

a,  9.5m/s?

=047 s

ASSESS The lion changes its speed by 9.5 meters per second in
one second. So it’s reasonable (if a bit intimidating) that it will
reach 4.5 m/s in just under half a second.



From Velocity to Acceleration

Let’s use the values we have computed for acceleration to make a table of velocities
for the Corvette and the Sonic we considered earlier. TABLE 2.3 uses the idea that the
Sonic’s velocity increases by 3.0 m/s every second while the Corvette’s velocity
increases by 7.5 m/s every second. The data in Table 2.3 are the basis for the
velocity-versus-time graphs in FIGURE 2.24. As you can see, an object undergoing
constant acceleration has a straight-line velocity graph.

FIGURE 2.24 Velocity-versus-time graphs
for the two cars.

TABLE 2.3 Velocity data for the Sonic and
the Corvette

. Vd(')dty of Velocity of The velocity-versus-time graph
Time (s) Sonic (m/s) Corvette (m/s) Ve (M/S) 50 Straight Tine. The slope
0 0 0 304 can be computed using Corvette
the rise and the run.
1 3.0 7.5 _,
2 6.0 15.0 201 Av,=7.5m/s
3 9.0 225 104 Ar=10s Sonic
4 12.0 30.0
0 T T T T t(s)
0 1 2 3 4

The slope of either of these lines—the rise over the run—is Ay, /Az. Comparing
this with Equation 2.8, we see that the equation for the slope is the same as that for
the acceleration. That is, an object’s acceleration is the slope of its velocity-versus-

time graph:
acceleration a, at time ¢ = slope of velocity graph at time ¢ (2.9)

The Sonic has a smaller acceleration, so its velocity graph has a smaller slope.

Analyzing a car’s velocity-versus-time graph

2.4 Acceleration
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FIGURE 2.25a is a graph of velocity versus time for a car. Sketch a
graph of the car’s acceleration versus time.

REASON The graph can be divided into three sections:

= An initial segment, in which the velocity increases at a steady
rate
A middle segment, in which the velocity is constant

A final segment, in which the velocity decreases at a

steady rate

In each section, the acceleration is the slope of the velocity-
versus-time graph. Thus the initial segment has constant, positive
acceleration, the middle segment has zero acceleration, and the

final segment has constant, negative acceleration. The accelera-
tion graph appears in FIGURE 2.25b.

ASSESS This process is analogous to finding a velocity graph
from the slope of a position graph. It is important to understand that
the zero acceleration in the middle segment does nof mean that the
velocity there is zero. In this segment the velocity is constant, which
means that it is not changing and thus the car is not accelerating.

In the first and last segments, the velocity is changing, and so
the car does have a nonzero acceleration. In the first segment, the
acceleration is positive; in the last segment, it is negative. What
does the sign of the acceleration tell us? We will address this
issue in the next section.

FIGURE 2.25 Finding an acceleration graph from a velocity graph.

(a) Vy

R 0 T
During the initial segment --.,0

—
Constant velocity

g t 3
T T T s
Negative 510[)6 on

(b)

of the motion, the slope is g,

constant, so the N
acceleration is constant.

means zero slope on the
velocity graph and thus
zero acceleration.

the velocity graph
means negative
acceleration.
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S ReRGINTEEE A particle moves with "

the velocity-versus-time graph shown here.
At which labeled point is the magnitude of
the acceleration the greatest?

A

The Sign of the Acceleration

It’s a natural tendency to think that a positive value of a, or a, describes an object
that is speeding up while a negative value describes an object that is slowing down.
Unfortunately, this simple interpretation is not correct.

Acceleration, like velocity, is a vector. Specifically, the acceleration vector
points in the same direction as the velocity vector for an object that is speeding
up, and opposite to the velocity vector for an object that is slowing down.
Regardless of which way an object moves, an acceleration vector that points in the
same direction as the velocity “pulls” the velocity vectors to make them longer and
longer—speeding up—while an acceleration vector that points opposite to the veloc-
ity “pushes against” the velocity vectors to make them shorter and shorter—slowing
down. You can see this in the four situations shown in FIGURE 2.26.

Just as we did with velocity, we can simplify our analysis of one-dimensional
motion by using an ordinary variable a,, which can be positive or negative, to repre-
sent the one-dimensional acceleration. The sign convention for a, (and a,) is exactly

LRI [ 48 FIGURE 2.26 Determining the sign of the acceleration.

E A video to support a section’s topic
is embedded in the eText.

Video Motion Along a Straight Line

The object is moving to
the right, so v, > 0.
Because it is speeding up,
its acceleration vector
points in the same
direction as its velocity
(i.e., to the right),

soa, > 0.

v
@ 0P =P 0—P-0
a
¥
Positive a,,
positive slope

Vx

The object is moving to
the left, so v, < 0.
Because it is slowing
down, its acceleration
vector points opposite to
its velocity (i.e., to the
right), so a, > 0.

v
e e o o o
a
I:\
Positive a,,

positive slope

Vx

The object is moving to
the right, so v, > 0.
Because it is slowing
down, its acceleration
vector points opposite to
its velocity (i.e., to the
left), so a, < 0.

v
== 0=p> 0P &0
a
I:\
Negati\./e a,,
negative slope

Vx

The object is moving to
the left, so v, < 0.
Because it is speeding up,
its acceleration vector
points in the same
direction as its velocity
(i.e., to the left),

soa, < 0.

v
0G0 4-040-B®
a
4
Negati{/e ay,
negative slope

Vx

An elevator is moving downward. It is slowing down as it approaches the
ground floor. Adapt the information in Figure 2.26 to determine which of the following velocity
graphs best represents the motion of the elevator.

Vy
%t

A. B.

Vy Vy Vy
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the same as the sign convention for velocity that was shown in Figure 2.7: a, (or a,)
is positive when the acceleration vector points to the right (or up), negative when the
acceleration vector points to the left (or down).

Notice that the first two situations in Figure 2.26, where the acceleration vectors
point to the right, both have positive values of the acceleration a, even though one
shows an object speeding up and the other an object slowing down. The sign of a, is
based on the direction the acceleration vector points, not on whether the object is
speeding up or slowing down.

Figure 2.26 illustrates two more ideas: First, our convention for the sign of the
acceleration is consistent with what you just saw about an object’s acceleration
being the slope of its velocity graph. Second, an object is speeding up if v, and a,
have the same sign, and slowing down if they have opposite signs.

2.5 Motion with Constant Acceleration

For uniform motion—motion with constant velocity—we found in Equation 2.3
a simple relationship between position and time. It’s no surprise that there are also
simple relationships that connect the various kinematic variables in constant-
acceleration motion. We will start with a concrete example, the launch of a Saturn V
rocket like the one that carried the Apollo astronauts to the moon in the 1960s and
1970s. FIGURE 2.27 shows one frame from a video of a rocket lifting off the launch
pad. The red dots show the positions of the top of the rocket at equally spaced inter-
vals of time in earlier frames of the video. This is a motion diagram for the rocket,
and we can see that the velocity is increasing. The graph of velocity versus time in
FIGURE 2.28 shows that the velocity is increasing at a fairly constant rate. We can
approximate the rocket’s motion as having constant acceleration.
We can use the slope of the graph in Figure 2.28 to determine the acceleration of
the rocket:
Avy,  27m/s
a, = =

= = = 2
T At 1.5s 18 m/s

This acceleration is more than double the acceleration of the Corvette we discussed
earlier, and it goes on for a long time—the first phase of the launch lasts over 2 min-
utes! How fast is the rocket moving at the end of this acceleration, and how far has it
traveled? To answer questions like these, we first need to work out some basic kine-
matic equations for motion with constant acceleration.

Constant-Acceleration Equations

Consider an object whose acceleration a, remains constant during the time interval
At = t; — t;. At the beginning of this interval, the object has initial velocity (v,); and
initial position x;. Note that #; is often zero, but it need not be. FIGURE 2.29a shows the
acceleration-versus-time graph. It is a horizontal line between 7 and #;, indicating a
constant acceleration.

FIGURE 2.29 Acceleration and velocity graphs for motion with constant acceleration.

The displacement Ax is the
area under this graph: the sum
of the areas of a triangle . . .
(a) Acceleration (b)  Velocity %

... and a rectangle. *

Ay

47

FIGURE 2.27 The red dots show the posi-
tions of the top of the SaturnV rocket at
equally spaced intervals of time during

liftoff.

FIGURE 2.28 A graph of the rocket’s

velocity versus time.

vy (m/s)
40+
35
30
25
20 A
151
10

5 4

0

Ar=15s

Avy, =27 m/s

0.0

05

10

15

20

2.5

t(s)



48

CHAPTER 2 Motion in One Dimension

FIGURE 2.30 Position-versus-time graph
for the SaturnV rocket launch.
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The position-versus-time graph
for the rocket’s vertical motion
is a parabola, a shape that
implies motion at constant
acceleration.
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The object’s velocity is changing because the object is accelerating. We can use
the acceleration to find (v,); at a later time #;. We defined acceleration as
Av, (Vx)f B (Vx)i

“EMT A 10

which is rearranged to give

(vo)r= (vo)i +a, At @2.11)

Velocity equation for an object with constant acceleration

» We have expressed this equation for motion along the x-axis, but it is a
general result that will apply to any axis. «

The velocity-versus-time graph for this constant-acceleration motion, shown in
FIGURE 2.29b, is a straight line with value (v,); at time #; and with slope a,.

We would also like to know the object’s position x; at time #;. As you learned
earlier, the displacement Ax during a time interval Ar is the area under the
velocity-versus-time graph. This area is shown shaded in Figure 2.29b. The shaded
area can be divided into a rectangle of area (v,); Ar and a triangle of area
I (a, Ar)(Ar) =L a,(Ar)% Adding these gives

xe=x;+ (vy); At + 3 a,(Ar)? (2.12)

Position equation for an object with constant acceleration

where Ar = t; — t; is the elapsed time. The fact that the time interval Az appears in
the equation as (At)2 causes the position-versus-time graph for constant-acceleration
motion to have a parabolic shape. For the rocket launch of Figure 2.27, a graph of
the position of the top of the rocket versus time appears as in FIGURE 2.30.

Equations 2.11 and 2.12 are two of the basic kinematic equations for motion with
constant acceleration. They allow us to predict an object’s position and velocity at a
future instant of time. We need one more equation to complete our set, a direct rela-
tionship between displacement and velocity. To derive this relationship, we first use
Equation 2.11 to write Az = ((v,);— (v,);)/a,. We can substitute this into Equation
2.12 to obtain

(vo)i? = (n)i® + 2a, Ax (2.13)

Relating velocity and displacement for constant-acceleration motion

In Equation 2.13, Ax = x; — x; is the displacement (not the distance!), so it can be
positive or negative. Notice that Equation 2.13 does not require that we know the
time interval Az. This is an important equation in problems where we’re not given
information about times.

At this point, it’s worthwhile to summarize the relationships among kinematic
variables that we’ve seen. This will help you solve problems by gathering together
the most important information that you’ll use in your solutions. But, more impor-
tant, gathering this information together allows you to compare graphs, equations,
and details from different parts of the chapter in one place. This will help you make
important connections. The emphasis is on synthesis—hence the title of this box.
You'’ll find other such synthesis boxes in most chapters.
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SYNTHESIS 2.1 Describing motion in one dimension

We describe motion in terms of position, velocity, and acceleration.

For all motion:

For uniform motion:
- acceleration is zero

Final and initial
position (m)

The velocity is constant,
x so the slope of the position

Velocity is the rate of v, = H o graph is con:stam as well. % g

change of position, in m/s. ........-- 3 At - velocity is constant  x¢ Xf = X +“Vx ét 2.4
Acceleration is Fhe rate ofﬁ = A\/x ° posmon changes The slope is 1. Velocity Time
change of velocity, in m/s. __..... 77X At steadily X t (m/s) interval (s)

For motion with constant acceleration:
- acceleration is steady; it does not change

The acceleration is constant, so the
slope of the velocity graph is constant.

(e

The slope is a,.

(i

t

- the position changes as the square of
the time interval

The velocity steadily increases, so the slope
Vx of the position graph steadily increases.
d . 4

» we can also express the
change in velocity in terms
of displacement, not time

This gives us a third
equation, which is
useful for many
kinematics problems.

- velocity changes steadily

Final and initial velocity (m/s)

Ve = ()i + a, At @.11)

Initial velocitgl
(m/s)

Acceleration=" Time interval
(m/s?) (s)

Coming to a stop in a car

As you drive in your car at 15 m/s (just a bit under 35 mph), you
see a child’s ball roll into the street ahead of you. You hit the
brakes and stop as quickly as you can. In this case, you come to
restin 1.5 s. How far does your car travel as you brake to a stop?

STRATEGIZE The problem states that your car begins to slow
down when you hit the brakes; we’ll model this as constant-
acceleration motion. We know the initial and final speeds, and
we want to find the distance traveled. These observations suggest
that we use Equation 2.12 of Synthesis 2.1.

PREPARE The problem gives us a description of motion in
words. To help us visualize the situation, FIGURE 2.31 illustrates

FIGURE 2.31 Motion diagram and velocity graph for a car
coming to a stop.

We’ll assume that the The car is slowing, so the

car moves to the right. a _..acceleration vector points
€ opposite to the velocity vectors.
e o o o oo
v

v, (m/s .
i (mfs) As the car brakes, its
15 velocity steadily decreases.
10 @ At 1.5 s, the car

has come to rest.

5

0 o
0 05 10 15

1(s)

Final and initial position (m)

Sr=2+ ) At e A @12)

t

Time interval (s) Final and initial velocity (m/s)

)R = ()2 + 2a,Ax (2.13)

Change in
position (m)

Acceleration=""
(m/s?)

“Acceleration
(m/s?)

the key features of the motion with a motion diagram and a
velocity graph. The graph is based on the car slowing from
15m/stoOm/sin 1.5 s.

SOLVE We've assumed that your car is moving to the right, so its
initial velocity is (v,); = +15 m/s. After you come to rest, your
final velocity is (v,); = 0 m/s. We use the definition of accelera-
tion from Synthesis 2.1:

Av, (v)f—= ()i Om/s — 15m/s
a.= = — _
YAt At 1.5s

—10 m/s?

Now that we know the acceleration, we can compute the dis-
tance that the car moves as it comes to rest using Equation 2.12:

xp—x; = (v );At + 2a,(Ar)?
=(15m/s)(1.5s) + 2(—=10 m/s?)(1.5s)>=11m

AssEss 11 m is a little over 35 feet. That’s a reasonable dis-
tance for a quick stop while traveling at about 35 mph.

We found that the acceleration a, is negative. This makes
sense from two perspectives. First, as we learned in Figure 2.26,
an object moving to the right and slowing down has a negative
acceleration. Second, the slope of the velocity graph in
Figure 2.31 is negative, again indicating a negative acceleration.
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Getting up to speed @ A bird must
have a minimum speed to fly. Generally, the
larger the bird, the faster the takeoff speed.
Small birds can get moving fast enough to fly
with a vigorous jump, but larger birds may
need a running start. This swan must acceler-
ate for a long distance in order to achieve the
high speed it needs to fly, so it makes a fren-
zied dash across the frozen surface of a pond.
Swans require a long, clear stretch of water
or land to become airborne.

As we’ve noted, for motion at constant acceleration, the position changes as the
square of the time interval. If the initial velocity (v,); is zero, Equation 2.12 from
Synthesis 2.1 can be written as

1
Xp—x;=Ax= Eax(At)2

This is a new mathematical relationship—a quadratic relationship—that we will see
again and one that we can use as the basis of reasoning to solve problems.

u Quadratic relationships

Two quantities are said to have a quadratic y y = Ax?
relationship if y is proportional to the square  4A-4z-----------+

of x. We write the mathematical relationship as B
1 Doubling x

y= sz causes y to
9 ional 2 4 change l?y a
y is proportional to x factor of 4.

The graph of a quadratic relationship is a parabola. 4]

scaLinG If x has the initial value x;, then y 0
has the initial value y, = A(x;)?. Changing x
from x| to x, changes y from y; to y,. The ratio

of y, to y; is
v _Ax)® (x_z>2
oA\

| EE
=

The ratio of y, to y; is the square of the ratio of x, to x;. If y is a quadratic function
of x, a change in x by some factor changes y by the square of that factor:

= If you increase x by a factor of 2, you increase y by a factor of 22 = 4.
= If you decrease x by a factor of 3, you decrease y by a factor of 3> =9.

Generally, we can say that:

Changing x by a factor of ¢ changes y by a factor of ¢ )
Exercise 19

Finding the displacement of a drag racer

A drag racer, starting from rest, travels 6.0 m in 1.0 s. Suppose the car continues this
acceleration for an additional 4.0 s. How far from the starting line will the car be?

STRATEGIZE We assume that the acceleration is constant. Because the initial position
and velocity are zero, the displacement will then scale as the square of the time; we can
then use ratio reasoning to solve the problem.

PREPARE After 1.0 s, the car has traveled 6.0 m; after another 4.0 s, a total of 5.0 s
will have elapsed.

SoLVE The initial elapsed time was 1.0 s, so the elapsed time increases by a factor of
5. The displacement thus increases by a factor of 52, or 25. The total displacement is

Ax=25(6.0m) =150 m

AssEss This is a big distance in a short time, but drag racing is a fast sport, so our
answer makes sense.

A cyclist is at rest at a traffic light. When the light turns green,
he begins accelerating at 1.2 m/s>. How many seconds after the light turns green

does he reach his cruising speed of 6.0 m/s?

A. 10s B. 2.0s C. 3.0s D. 40s E. 50s
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2.6 Solving One-Dimensional
Motion Problems

The big challenge when solving a physics problem is to translate the words into
symbols that can be manipulated, calculated, and graphed. This translation from
words to symbols is the heart of problem solving in physics. Ambiguous words and
phrases must be clarified, the imprecise must be made precise, and you must arrive
at an understanding of exactly what the question is asking.

PROBLEM-SOLVING
APPROACH

The first step in solving a seemingly complicated problem is to break it down into a series of smaller steps. In worked
examples in the text, we use a problem-solving approach that consists of four steps: strategize, prepare, solve, and
assess. Bach of these steps has important elements that you should follow when you solve problems on your own.

STRATEGIZE The Strategize step of the solution is where you address the big-picture questions about the problem. Here,
you take a step back from the details of the problem to ask:

What kind of problem is this? From reading the problem statement, try to categorize the problem in terms of what
you’ve learned in the chapter. If, for instance, the problem refers to a bicyclist riding at a constant 7.0 m/s, this sug-
gests the problem is about uniform motion.

What’s the correct general approach? What principles, strategies, and tactics that you’ve learned are relevant in
solving this problem? For example, if you're given a position-versus-time graph and are asked to find the velocity, the
principle that the velocity is related to the slope of the position graph is likely to be important.

What should the answer look like? Is a numerical answer asked for? Do you need a graph or a sketch?

PREPARE The Prepare step of a solution is where you identify important elements of the problem and collect information.
It’s tempting to jump right to the Solve step, but a skilled problem solver spends the most time on preparation, which
includes:

Drawing a picture. This is often the most important part of a problem. The picture lets you model the problem and
identify the important elements. As you add information to your picture, the outline of the solution will take shape.
For the problems in this chapter, a picture could be a motion diagram or a graph—or perhaps both.

Collecting necessary information. The problem’s statement may give you some values of variables. Other informa-
tion may be implied, or looked up in a table, or estimated or measured.

Doing preliminary calculations. Some calculations, such as unit conversions, are best done in advance.

soLve The Solve step of a solution is where you actually do the mathematics or reasoning necessary to arrive at the
answer. This is the part of the problem-solving approach that you likely think of as “solving problems.” The Strategize
and Prepare steps help you be certain you understand the problem before you start putting numbers in equations.

Assess The Assess step of your solution is very important. Once you have an answer, you should check to see whether
it makes sense. Ask yourself:

Does my solution answer the question that was asked? Make sure you have addressed all parts of the question and
clearly written down your solutions.

Does my answer have the correct units and number of significant figures?

Does the value I computed make physical sense? In this book all calculations use physically reasonable numbers. If
your answer seems unreasonable, go back and check your work.

Can I estimate what the answer should be to check my solution?

Does my final solution make sense in the context of the material I am learning?

The Pictorial Representation

Many physics problems, including one-dimensional motion problems, have several
variables and other pieces of information to keep track of. The best way to tackle
such problems is to draw a picture, as we noted when we introduced a general
problem-solving approach. But what kind of picture should you draw?

In this section, we will begin to draw pictorial representations as an aid to solv-
ing problems. A pictorial representation shows all of the important details that we
need to keep track of and will be very important in solving motion problems.
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TACTICS

BOX 2.2 Drawing a pictorial representation

O Sketch the situation. Not just any sketch: Show the object at the begin-
ning of the motion, at the end, and at any point where the character of the
motion changes. Very simple drawings are adequate.

@ Establish a coordinate system. Select your axes and origin to match the
motion.

©® Define symbols. Use the sketch to define symbols representing quantities
such as position, velocity, acceleration, and time. Every variable used later
in the mathematical solution should be defined on the sketch.

Dinner at a distance @ A chameleon’s
tongue is a powerful tool for catching prey.
Certain species can extend the tongue to a
distance of over 1 ftin less than 0.1 s! A
study of the kinematics of the motion of the
chameleon tongue reveals that the tongue has
a period of rapid acceleration followed by a
period of constant velocity. This knowledge
is a very valuable clue in the analysis of the
evolutionary relationships between chame-
leons and other animals.

We will generally combine the pictorial representation with a list of values. In
this list, you should:

O List the known information. Make a table of the quantities whose values
you can determine from the problem statement or that you can find quickly
with simple geometry or unit conversions.

© [dentify the desired unknowns. What quantity or quantities will allow you
to answer the question?

Exercise 21

Drawing a pictorial representation

Complete a pictorial representation and a list of values for the
following problem: A rocket sled accelerates at 50 m/s> for 5 s.
What are the total distance traveled and the final velocity?

STRATEGIZE We’ll prepare the pictorial representation and list
of values according to the steps of Tactics Box 2.2.

PREPARE FIGURE 2.32a shows a pictorial representation as drawn
by an artist in the style of the figures in this book. This is certainly
neater and more artistic than the sketches you will make when
solving problems yourself! FIGURE 2.32b shows a sketch like one
you might actually draw. It’s less formal, but it contains all of the
important information you need to solve the problem. The circled
numbers in the sketch correspond to the steps in Tactics Box 2.2.

» Throughout this book we will illustrate select
examples with actual hand-drawn figures so that you have
them to refer to as you work on your own pictures for home-
work and practice. <

Let’s look at how these pictures were constructed. The motion
has a clear beginning and end; these are the points in the motion
that we’ve sketched. A coordinate system has been chosen with the
origin at the starting point. The quantities x, v,, and 7 are needed at
both points, so these have been defined on the sketch and distin-
guished by subscripts. The acceleration is associated with an inter-
val between these points. Values for two of these quantities are
given in the problem statement. Others, such as x; =0 m and
t;=0s, are inferred from our choice of coordinate system. The
value (v,); = 0m/s is part of our interpretation of the problem.
Finally, we identify x; and (v,); as the quantities that will answer
the question. We now understand quite a bit about the problem and
would be ready to start a quantitative analysis.

ASSESS We didn’t solve the problem; that was not our purpose.
Constructing a pictorial representation and a list of values is part
of a systematic approach to interpreting a problem and getting
ready for a mathematical solution.

FIGURE 2.32 Constructing a pictorial representation and a list of values.

(a) Artist’s version List of values

Pictorial representation Known
x;=0m
()i = 0m/s
t,=0s

a, = 50 m/s?
t=35s

ay

[ <]

T T X

X, Wi G X, (W, It
Find

Xp, (Vp

(b) Student sketch Known Find
e X, =0m Xf
o Sketc}:.?'m‘l{'.on' @ Establish (L) =0 mé (v )
4 R coordinate 4 =0 s &
a, syst..em. 2y =50 mb2 i
\_ —_’4 %, -[7 ;‘6‘ & i
<=/ = N % i O ldenify
f f x : desired
%> (idisti ¢ >xp, (B Ip, ¥ O List unknowns.
known
© Define symbols. information.

The Visual Overview

The pictorial representation and the list of values are a very good complement to the
motion diagram and other ways of looking at a problem that we have seen. As we
translate a problem into a form we can solve, we will combine these elements into

Video Motion with Constant Acceleration
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what we will term a visual overview. The visual overview will consist of some or
all of the following elements:

A motion diagram. A good approach for solving a motion problem is to start by

drawing a motion diagram.
A pictorial representation, as defined in Tactics Box 2.2.

A list of values, also described in Tactics Box 2.2. This list should sum up all of

the important values in the problem.

A graphical representation. For motion problems, it is often quite useful to

include a graph of position and/or velocity.

EXAMPLE 2.11 Kinematics of a rocket launch

A Saturn V rocket is launched straight up with a constant accel-
eration of 18 m/s%. After 150 s, how fast is the rocket moving and
how far has it traveled?

STRATEGIZE We are given the acceleration and the time inter-
val, suggesting that this is a constant-acceleration problem. We
will find the velocity from Equation 2.11 and the position from
Equation 2.12.

PREPARE FIGURE 2.33 shows a visual overview of the rocket
launch that includes a motion diagram, a pictorial representation,
and a list of values. The visual overview shows the whole prob-
lem in a nutshell. The motion diagram illustrates the motion of the
rocket. The pictorial representation (produced according to Tac-
tics Box 2.2) shows the axis, identifies the important points of the
motion, and defines the variables. Finally, we include a list of val-
ues that gives the known and unknown quantities (again according
to Tactics Box 2.2). In the visual overview we have taken the state-
ment of the problem in words and made it much more precise. The
overview contains everything we need to know about the problem.

FIGURE 2.33 Visual overview of the rocket launch.

Motion diagram

y
ye W, B

\V

g

<!

S

The motion diagram
for the rocket shows
the full range of the
motion.

‘ i Yi- W)i» &

Pictorial representation

Future chapters will add other elements to this visual overview of the physics.

SOLVE Our first task is to find the final velocity. Our list of val-
ues includes the initial velocity, the acceleration, and the time
interval, so we can use Equation 2.11 of Synthesis 2.1 to find the
final velocity:

(v)r= (v,)i +a, Ar=0m/s + (18 m/s*)(150s)
=2700 m/s
The distance traveled is found using Equation 2.12 of Synthesis 2.1:
=i+ (W) At + 3 a,(Ar)?
=0m+ (0m/s)(150s) + 5 (18 m/s?) (150 s )>
=2.0 X 10° m = 200 km
AssSESS The acceleration is very large, and it goes on for a long

time, so the large final velocity and large distance traveled seem
reasonable.

List of values

Known

»=0m The list of values makes

()i = 0 m/s everything concrete. We define

=0s the start of the problem to be at

a, = 18 m/s? ) time O s, when the rocket has a

r=150s <= position of 0 m and a velocity of
0 m/s. The end of the problem is

Find at time 150 s. We are to find the

(vy)faTyf position and velocity at this time.

The pictorial fcprcscmation identifies the two
important points of the motion, the start and the end,
and shows that the rocket accelerates between them.

Problem-Solving Approach for Motion
with Constant Acceleration

Earlier in this section, we introduced a general problem-solving approach. In this and
future chapters we will adapt this general approach to specific types of problems.
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PROBLEM-SOLVING

APPROACH 2.1 Motion with constant acceleration

Problems involving constant acceleration—speeding up, slowing down, ver-
tical motion, horizontal motion—can all be treated with the same problem-
solving approach.

sTrATEGIZE Identify the problem as one involving constant-acceleration
motion: Look for statements that give the acceleration or indicate that the
speed or velocity of an object is changing. Free-fall problems, discussed in
the next section, are always constant-acceleration problems. Solve constant-
acceleration problems using the ideas in Synthesis 2.1.

PREPARE Draw a visual overview of the problem. This should include a motion
diagram, a pictorial representation, and a list of values; a graphical representa-
tion may be useful for certain problems.

soLve The mathematical solution is based on the three constant-acceleration
equations in Synthesis 2.1.

Though the equations are phrased in terms of the variable x, it’s customary
to use y for motion in the vertical direction.

Use the equation that best matches what you know and what you need to
find. For example, if you know acceleration and time and are looking for a
change in velocity, the first equation is the best one to use.

Uniform motion with constant velocity has a = 0.

AssEess s your result believable? Does it have proper units? Does it make sense?

Exercise 25

Calculating the minimum length of a runway

A fully loaded Boeing 747 with all engines at full thrust acceler-
ates at 2.6 m/s%. Its minimum takeoff speed is 70 m/s. How much
time will the plane take to reach its takeoff speed? What mini-
mum length of runway does the plane require for takeoff?

STRATEGIZE The acceleration of the plane is given, which
directly tells us that this is a constant-acceleration problem. We’ll
need to use material from Synthesis 2.1.

PREPARE The visual overview of FIGURE 2.34 summarizes the
important details of the problem. We set x; and #; equal to zero
at the starting point of the motion, when the plane is at rest and
the acceleration begins. The final point of the motion is when
the plane achieves the necessary takeoff speed of 70 m/s. The
plane is accelerating to the right, so we will compute the time
for the plane to reach a velocity of 70 m/s and the position of
the plane at this time, giving us the minimum length of the
runway.

FIGURE 2.34 Visual overview for an accelerating plane.

*o>o—bo———>o Known
E/ X Om f_‘ =10k,
P P e~ W= O mfs
l X ay= A6 m/s*
0 (V,)/= 70 m/s
o () %064kt Find
At X

soLVE First we solve for the time required for the plane to reach
takeoff speed. We can use Equation 2.11 from Synthesis 2.1 to
compute this time:

(vx)f = (Vx)i + ay At
70 m/s =0 m/s + (2.6 m/s?) At

_ 70m/s

t=———=269s
2.6 m/s?

We keep an extra significant figure here because we will use this
result in the next step of the calculation.

Given the time that the plane takes to reach takeoff speed, we
can compute the position of the plane when it reaches this speed
using Equation 2.12 from Synthesis 2.1:

xXp=x; + (Vx)i At + %aX(At)2
=0m-+ (0m/s)(26.9s) + 3 (2.6 m/s?)(26.9 s)?
=940 m

Our final answers are thus that the plane will take 27 s to reach
takeoff speed, with a minimum runway length of 940 m.

ASSESS Think about the last time you flew; 27 s seems like a
reasonable time for a plane to accelerate on takeoff. Actual run-
way lengths at major airports are 3000 m or more, a few times
greater than the minimum length, because they have to allow for
emergency stops during an aborted takeoff. (If we had calculated
a distance far greater than 3000 m, we would know we had done
something wrong!)
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Finding the braking distance of a car on the highway

A car is traveling at a speed of 30 m/s, a typical highway speed,
on wet pavement. The driver sees an obstacle ahead and decides
to stop. From this instant, it takes him 0.75 s to begin applying
the brakes. Once the brakes are applied, the car experiences an
acceleration of —6.0 m/s. How far does the car travel from the
instant the driver notices the obstacle until it stops?

STRATEGIZE The wording of this problem makes it clear that,
while it is braking, the car is experiencing constant acceleration.
We’ll once more use the information from Synthesis 2.1.

PREPARE This problem is more involved than previous prob-
lems we have solved, so we will take more care with the visual
overview in FIGURE 2.35. In addition to a motion diagram and a
pictorial representation, we include a graphical representation.
Notice that there are two different phases of the motion: a con-
stant-velocity phase before braking begins, and a steady slow-
ing down once the brakes are applied. We will need to do two
different calculations, one for each phase. Consequently, we use
numerical subscripts rather than the simple i and f.

SoLVE From t, to 1, the velocity stays constant at 30 m/s. This
is uniform motion, so we compute the position at time 7, using
Equation 2.4 from Synthesis 2.1:

X =x;+ (v)1(t,—1;) =0m + (30 m/s)(0.75 s)
=225m

FIGURE 2.35 Visual overview for a car braking to a stop.

Starting at #,, the velocity begins to decrease at a steady
—6.0 m/s? until the car comes to rest at 7. We can compute this
time interval using Equation 2.11 from Synthesis 2.1,
(vx)3 = (V.\:)Z +a, At

~ ()3= ()2 Om/s—30m/s

5.0
a, —6.0 m/s* ;

At=13—1,

We can compute the position at time 73 using Equation 2.12

from Synthesis 2.1. We take point 2 as the initial point and point

3 as the final point for this phase of the motion and use
At = 3 — 121

x3=x+ (vy)y At + a (Ar)?
=225m+ (30m/s)(5.0s) +1 (—6.0m/s?)(5.0 5)?
=98 m

X3 is the position of the car at the end of the problem—and so the
car travels 98 m before coming to rest.

ASSESS The numbers for the reaction time and the acceleration
on wet pavement are reasonable ones for an alert driver in a car
with good tires. The final distance is quite large—more than the
length of a football field.

_____ From time 1, to 73, the car is braking, Known
..... and the velocity decreases. n=0s
_ o v, (m/s ©=0m
5 &= 0 ! ax i (fs) (v); =30 m/s
- >o .‘I > 0—p-0->-0-0 (W1 i h=075s
X1, (W1, £ X2, (V)as 1 X3, (V). L ! (V) = 30 m/s
1 s 1y 2 (r)z 2 3 (W3 13 : B () = 0 mls
[ Between ¢, and 73, a, = —6.0 m/s’
= 0 ; —1(s) Find
f S, B f3 o 15} 5] X3

........... From time #, to o, the car ..o
continues at a constant speed.

2.7 Free Fall

If you drop a hammer and a feather, you know what will happen. The hammer
quickly strikes the ground, and the feather drifts slowly downward and lands some
time later. But if you do this experiment on the moon, the result is strikingly differ-
ent: Both the hammer and the feather experience the exact same acceleration,
undergo the exact same motion, and strike the ground at the same time.

The moon lacks an atmosphere, and so objects falling to its surface experience no
air resistance. They are acted upon by only one force—gravity. If an object moves
under the influence of gravity only, and no other forces, we call the resulting motion
free fall. Many experiments have shown that all objects in free fall, regardless of
their mass, have the same acceleration. Thus, if you drop two objects and they are
both in free fall, they hit the ground at the same time.

On the earth, air resistance is a factor. But when you drop a heavy object like a
hammer, air resistance can be ignored, so we make only a slight error in treating the
hammer as if it were in free fall. Motion with air resistance is a problem we will

Free-falling feather Apollo 15 lunar astro-
naut David Scott performed a classic experiment
on the moon, simultaneously dropping a hammer
and a feather from the same height. Both hit the
ground at the exact same time—something that
would not happen in the atmosphere of the earth!
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study in Chapter 5. Until then, we will restrict our attention to situations in which air
resistance can be ignored, and we will assume that falling objects are in free fall.

FIGURE 2.36a shows the motion diagram for an object that was released from rest
and falls freely. Since the acceleration is the same for all objects, the diagram and
graph would be the same for a falling baseball or a falling boulder! FIGURE 2.36b shows
the object’s velocity graph. The velocity changes at a steady rate. The slope of the
velocity-versus-time graph is the free-fall acceleration @y g1

a FIGURE 2.36 Motion of an object in free fall.
i § (a) An object dropped (b) The graph has a constant (c) An object initially moving
Video Figure 2.36 from rest is speeding v, (m/s) slope; thus the free-fall up is slowing down, so its

|

Video Free Fall

Some of the children on this trampoline are
moving up and some are moving down, but
all are in free fall—and so are accelerating
downward at 9.8 m/s%.

. up, so its acceleration acceleration is constant. o .. acceleration and its

s . : v . P
: and its (downward) 0 . . — t(s) ¢ (upward) velocity point in
velocity point in the 1 2 503 i opposite directions. The

i same direction. The i acceleration still points

+ acceleration thus —9.8 1 v down.

points down. g

[

—19.6 1

a, =—9.8 m/s?
—29.4 1

Instead of dropping the object, suppose we throw it upward. What happens then?
You know that the object will move up and that its speed will decrease as it rises.
This is illustrated in the motion diagram of FIGURE 2.36c, which shows a surprising
result: Even though the object is moving up, its acceleration still points down. In
fact, the free-fall acceleration always points down, no matter what direction an
object is moving.

» Despite the name, free fall is not restricted to objects that are literally
falling. Any object moving under the influence of gravity only, and no other
forces, is in free fall. This includes objects falling straight down, objects that have
been tossed or shot straight up, objects in projectile motion (such as a basketball
free throw), and, as we will see, satellites in orbit. «

The value of the free-fall acceleration varies slightly at different places on the
earth, but for the calculations in this text we will use the the following average value:

Giree fan = (9.80 m/s?, vertically downward ) (2.14)

Standard value for the acceleration of an object in free fall

The magnitude of the free-fall acceleration has the special symbol g:
g =9.80 m/s?

We will generally work with two significant figures and so will use g = 9.8 m/s2.
Several points about free fall are worthy of note:

= g, by definition, is always positive. There will never be a problem that uses a
negative value for g.

= The velocity graph in Figure 2.36b has a negative slope. Even though a falling
object speeds up, it has negative acceleration. Thus g is not the object’s accelera-
tion, simply the magnitude of the acceleration. The one-dimensional acceleration is

ay=—g

= Because free fall is motion with constant acceleration, we can use the kinematic
equations for constant acceleration with a, = —g.

= Once an object is acted upon by only the force of gravity, it is in free fall with
a,= —9.8 m/s?. It doesn’t matter how the object entered free fall: Once in the
air, a football that was punted straight up has the same acceleration of —g as a
stone dropped off a bridge.
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g is not called “gravity.” Gravity is a force, not an acceleration. g is the free-fall

acceleration.

¢ =9.80 m/s* only on earth. Other planets have different values of g. You will

learn in Chapter 6 how to determine g for other planets.

We will sometimes compute acceleration of objects not in free fall in units of g.
An acceleration of 9.8 m/s? is an acceleration of 1g; an acceleration of 19.6 m/s?

is 2g. Generally, we can compute

acceleration (in units of m/s?)

acceleration (in units of g, or g’s) = 9.8 m/s2
.3 m/s

Analyzing a rock’s fall

A heavy rock is dropped from rest at the top of a cliff and falls
100 m before hitting the ground. How long does the rock take to
fall to the ground, and what is its velocity when it hits?

STRATEGIZE This is a free-fall problem, so it is a constant-
acceleration problem with @, = —g. We will use the constant-
acceleration equations from Synthesis 2.1.

PREPARE FIGURE 2.37 shows a visual overview with all necessary
data. We have placed the origin at the ground, so that y; = 100 m.

SoLVE The first question in the problem statement involves a
relationship between time and distance, a relationship expressed
by Equation 2.12 in Synthesis 2.1. Using (v,); =0m/s and
t;=0s, we find

ye=yit+ (v)i At + %ay (At)> =y, =g (At)> =y, — 5 gty

‘We can now solve for 7;:

t‘_\/z(yi—yf) _\/Z(IOOm—Om) s
! g 9.80 m/s? '

Now that we know the fall time, we can use Equation 2.11 to
find (v, )y:

(W)= (v)i—g At=—gty=—(9.80 m/s?)(4.52 s)
= —443 m/s

ASSESS Are the answers reasonable? Well, 100 m is about
300 feet, which is about the height of a 30-floor building. How

(2.15)

This allows us to express accelerations in units that have a definite physical reference.

FIGURE 2.37 Visual overview of a falling rock.
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long does it take an object to fall 30 floors? Four or five seconds
seems pretty reasonable. How fast would the object be going at
the bottom? Using an approximate version of our conversion fac-
tor 1 m/s = 2 mph, we find that 44.3 m/s = 90 mph. That also
seems like a pretty reasonable speed for something that has fallen
30 floors. Suppose we had made a mistake. If we had misplaced
a decimal point, we could have calculated a speed of 443 m/s,
or about 900 mph! This is clearly not reasonable. If we had mis-
placed the decimal point in the other direction, we would have
calculated a speed of 4.3 m/s = 9 mph. This is another unreason-
able result, because this is slower than a typical bicycling speed.

Analyzing the motion of a ball tossed upward

Draw a motion diagram and a velocity-versus-time graph for a
ball tossed straight up in the air from the point that it leaves the
hand until just before it is caught.

REASON You know what the motion of the ball looks like: The
ball goes up, and then it comes back down again. This compli-
cates the drawing of a motion diagram a bit because the ball
retraces its route as it falls. A literal motion diagram would show
the upward motion and downward motion on top of each other,
leading to confusion. We can avoid this difficulty by horizontally
separating the upward motion and downward motion diagrams.
This will not affect our conclusions because it does not change

any of the vectors. The motion diagram and velocity-versus-time
graph appear as in FIGURE 2.38.

AsSEss The highest point in the ball’s motion, where it reverses
direction, is called a turning point. What are the velocity and the
acceleration at this point? We can see from the motion diagram that
the velocity vectors are pointing upward but getting shorter as the ball
approaches the top. As it starts to fall, the velocity vectors are point-
ing downward and getting longer. There must be a moment—just an
instant as v switches from pointing up to pointing down—when the
velocity is zero. Indeed, the ball’s velocity is zero for an instant at
the precise top of the motion! We can also see on the velocity graph

Continued
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that there is one instant of time when v, = 0. This is the turning
point.

But what about the acceleration at the top? You might expect
the acceleration to be zero at the highest point. But recall that
the velocity at the top point is changing—from up to down.
If the velocity is changing, there must be an acceleration. The
slope of the velocity graph at the instant when v, = O—that is,

at the highest point—is no different than at any other point in
the motion. The ball is still in free fall with acceleration
a,= —g!

Another way to think about this is to note that zero accelera-
tion would mean no change of velocity. When the ball reached
zero velocity at the top, it would hang there and not fall if the
acceleration were also zero!

FIGURE 2.38 Motion diagram and velocity graph of a ball tossed straight up in the air.
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Finding the height of a leap @

A springbok is an antelope found
in southern Africa that gets its
name from its remarkable jumping
ability. When a springbok is star-
tled, it will leap straight up into the
air—a maneuver called a “pronk.”
A particular springbok goes into a
crouch to perform a pronk. It then extends its legs forcefully,
accelerating at 35 m/s? for 0.70 m as its legs straighten. Legs
fully extended, it leaves the ground and rises into the air.

a. At what speed does the springbok leave the ground?
b. How high does it go?

STRATEGIZE This is a two-part problem. In the first phase of its
motion, the springbok accelerates upward, reaching some maxi-
mum speed just as it leaves the ground. As soon as it does so, the
springbok is subject to only the force of gravity, so it is in free
fall. For both phases, we will use the constant-acceleration equa-
tions from Synthesis 2.1.

PREPARE We begin with the visual overview shown in
FIGURE 2.39, where we’ve identified the two different phases of
the motion: the springbok pushing off the ground and the spring-
bok rising into the air. We’ll treat these as two separate problems
that we solve in turn. We will “re-use” the variables y;, ys, (v, );»
and (v, ); for the two phases of the motion.

For the first part of our solution, in Figure 2.39a we choose
the origin of the y-axis at the position of the springbok deep in its

The ball starts with an
upward (positive)
velocity that steadily
decreases. When the ball reaches its highest
point, its velocity is instantaneously
vy zero. This is the turning point of
o the motion.

S Now the ball is

moving downward.
The velocity is negative.

t

L ay=—9.8 m/s’ ¢

During the entire motion, the acceleration is
that of free fall. The slope of the velocity
graph is constant and negative.

crouch. The final position is the top extent of the push, at the
instant the springbok leaves the ground. We want to find the
velocity at this position because that’s how fast the springbok is
moving as it leaves the ground. Figure 2.39b essentially starts
over—we have defined a new vertical axis with its origin at the
ground, so the highest point of the springbok’s motion is its dis-
tance above the ground. The table of values shows the key piece
of information for this second part of the problem: The initial
velocity for part b is the final velocity from part a.

After the springbok leaves the ground, this is a free-fall prob-
lem because the springbok is moving under the influence of
gravity only. We want to know the height of the leap, so we are
looking for the height at the top point of the motion. This is a
turning point of the motion, with the instantaneous velocity equal
to zero. Thus yy, the height of the leap, is the springbok’s position
at the instant (v, )¢ = 0.

SOLVE a. For the first phase, pushing off the ground, we have infor-
mation about displacement, initial velocity, and acceleration, but we
don’t know anything about the time interval. Equation 2.13 from
Synthesis 2.1 is perfect for this type of situation. We can use it to
solve for the velocity with which the springbok lifts off the ground:
(vy)fz = (Vy)i2 + 2ayAy
= (0 m/s)>+ 2(35 m/s?)(0.70 m) = 49 m?/s>

(v)r= V49 m*/s* = 7.0 m/s

The springbok leaves the ground with a speed of 7.0 m/s.



b. Now we are ready for the second phase of the motion, the ver-
tical motion after leaving the ground. Equation 2.13 is again
appropriate because again we don’t know the time. Because
y; = 0, the springbok’s displacement is Ay = y; — y; = yy, the
height of the vertical leap. From part a, the initial velocity is
(vy)i=7.0m/s, and the final velocity is (v,);= 0. This is
free-fall motion, with a, = —g; thus

which gives

2.7 FreeFall

(v = 2gy;

Solving for y;, we get a jump height of

(7.0 m/s)?
yi=

—— ———25m
2(9.8 m/s?)

ASSESS 2.5 mis aremarkable leap—a bit over 8 ft—but these ani-

(v)f =0=(v,) —28Ay = (v,) — 28y

FIGURE 2.39 A visual overview of the springbok’s leap.

(a) Pushing off the ground (b) Rising into the air
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The caption accompanying the photo at the start of the chapter suggested a ques-
tion about animals and their athletic abilities: Who is the winner in a race between a
horse and a man? The surprising answer is “It depends.” Specifically, the winner
depends on the length of the race.

Some animals are capable of high speed; others are capable of great accelera-
tion. Horses can run much faster than humans, but, when starting from rest,
humans are capable of much greater initial acceleration. FIGURE 2.40 shows velocity
and position graphs for an elite male sprinter and a thoroughbred racehorse. The
horse’s maximum velocity is about twice that of the man, but the man’s initial
acceleration—the slope of the velocity graph at early times—is greater than that of
the horse. As the second graph shows, a man could win a short race. For a longer
race, the horse’s higher maximum velocity will put it in the lead. The men’s world-
record time for the mile is a bit under 4 min, but a horse can easily run a mile in
less than 2 min.

For a race of many miles, another factor comes into play: energy. A very long
race is less about velocity and acceleration than about endurance—the ability to con-
tinue expending energy for a long time. In such endurance trials, humans often win.
We will explore such energy issues in Chapter 11.

A volcano ejects a chunk of rock straight up at a velocity of
v, = 30 m/s. Ignoring air resistance, what will be the velocity v, of the rock when it
falls back into the volcano’s crater?

A.>30m/s B.30m/s C.0m/s D. —30m/s E. < -30m/s

mals are known for their jumping ability, so this seems reasonable.

Known

yi=0m

()i is equal to (1); from part a
)y = 0m/s

a,=—9.8 m/s?

Find

i

FIGURE 2.40 @ Velocity-versus-time
and position-versus-time graphs for a
sprint between a man and a horse.
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CHAPTER 2 Motion in One Dimension

INTEGRATED EXAMPLE 2.17 Speed versus endurance (ED

Cheetahs have the highest top speed of any land animal, but they
usually fail in their attempts to catch their prey because their
endurance is limited. They can maintain their maximum speed of
30 m/s for only about 15 s before they need to stop.

Thomson’s gazelles, their preferred prey, have a lower top
speed than cheetahs, but they can maintain this speed for a few
minutes. When a cheetah goes after a gazelle, success or failure is
a simple matter of kinematics: Is the cheetah’s high speed enough
to allow it to reach its prey before the cheetah runs out of steam?
The following problem uses realistic data for such a chase.

A cheetah has spotted a gazelle. The cheetah leaps into action,
reaching its top speed of 30 m/s in a few seconds. At this instant,
the gazelle, 160 m from the running cheetah, notices the danger
and heads directly away. The gazelle accelerates at 4.5 m/s” for
6.0 s, then continues running at a constant speed. After reaching its
maximum speed, the cheetah can continue running for only 15 s.
Does the cheetah catch the gazelle, or does the gazelle escape?

STRATEGIZE The example asks, “Does the cheetah catch the
gazelle?” Our most challenging task is to translate these words
into a mathematical problem that we can solve using the tech-
niques of this chapter. For a problem of this complexity, it will be
particularly important to prepare a complete visual overview. An
overview lays out all the relevant information in a concise visual
form, helping to guide your mathematical solution.

PREPARE This example consists of two related problems, the
motion of the cheetah and the motion of the gazelle, for which
we’ll use the subscripts “C” and “G.” Let’s take our starting
time, £; = 0 s, as the instant that the gazelle notices the cheetah
and begins to run. We’ll take the position of the cheetah at this
instant as the origin of our coordinate system, so x;c =0 m and
X1 = 160 m—the gazelle is 160 m away when it notices the
cheetah. We’ve used this information to draw the visual overview
in FIGURE 2.41, which includes motion diagrams and velocity
graphs for the cheetah and the gazelle. The visual overview sums
up everything we know about the problem.

With a clear picture of the situation, we can now rephrase the
problem this way: Compute the position of the cheetah and the
position of the gazelle at #; = 15 s, the time when the cheetah
needs to break off the chase. If x3g > x3c, then the gazelle stays

FIGURE 2.41 Visual overview for the cheetah and for the gazelle.

out in front and escapes. If x35 =x3c, the cheetah wins the
race—and gets its dinner.

SOLVE The cheetah is in uniform motion for the entire duration
of the problem, so we can use Equation 2.4 of Synthesis 2.1 to
solve for its position at t; = 15 s:

X3e =xic+ (v)1cAr=0m + (30 m/s)(15s) =450 m

The gazelle’s motion has two phases: one of constant accelera-
tion and then one of constant velocity. We can solve for the position
and the velocity at 7,, the end of the first phase, using Equations
2.11 and 2.12 of Synthesis 2.1. Let’s find the velocity first:

(vo)ag = (V)16 + (ay)gAt = 0m/s + (4.5 m/s?)(6.0 s) = 27 m/s
The gazelle’s position at #, is
X6 = Y16 + (W16 AL + 3(a)(AD?
=160m+0+ 1.5 m/s%)(6.0 5> = 240 m
il is the time for this

phase of the motion,
Hh—1=060s.

The gazelle has a
head start; it begins
at x;g = 160 m.

From 1, to #5 the gazelle moves at a constant speed, so we can use the
uniform motion equation, Equation 2.4, to find its final position:

At for this phase of the
motion is 13 —, = 9.0 s.

The gazelle begins this
phase of the motion at
Xog = 240 m.

a6 = X2 + ()ac Af =240 m + (27 m/s)9.0 s) = 480 m

X3¢ 18 450 m; x3g is 480 m. The gazelle is 30 m ahead of the
cheetah when the cheetah has to break off the chase, so the
gazelle escapes.

ASSESS Does our solution make sense? Let’s look at the final
result. The numbers in the problem statement are realistic, so we
expect our results to mirror real life. The speed for the gazelle is
close to that of the cheetah, which seems reasonable for two ani-
mals known for their speed. And the result is the most common
occurrence—the chase is close, but the gazelle gets away.

Cheetah: . V. (mjs) . The cheetah runs at a constant Known
=0 v 3);] ;" speed for the entire chase. +=0s
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Summary

(c[eJ.-\W To describe and analyze motion along a line.

GENERAL STRATEGIES |
Problem-Solving Approach

Our general problem-solving approach has four parts:

STRATEGIZE Think about the big picture: What
kind of problem is this? What general approach
should be used? What should the answer look like?

PREPARE Set up the problem:
¢ Draw a picture.
¢ Collect necessary information.

e Do preliminary calculations.

SOLVE Do the necessary mathematics or reasoning.

AssEss Check your answer to see if it is complete

in all details and makes physical sense.

IMPORTANT CONCEPTS

Velocity is the rate of change of position:

_ Ax
Vy = E
Acceleration is the rate of change of velocity:
_ Ay,
a, = E

The units of acceleration are m/s>.

An object is speeding up if v, and @, have the
same sign, slowing down if they have opposite
signs.

APPLICATIONS

Uniform Motion

An object in uniform motion has a constant
velocity. Its velocity graph is a horizontal
line; its position graph is linear.

vL’

Kinematic equation for uniform motion:
Xp=x; + v, At

Uniform motion is a special case of
constant-acceleration motion, with a, = 0.

Visual Overview

A visual overview consists of several parts that completely specify a problem.

This may include any or all of the elements below:

ion

hi ion

Motion diagram  Pictorial repr
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A position-versus-time graph plots

position on the vertical axis against time on

the horizontal axis.

x (m) Lo
Velocity is the slope
of the position graph.

Motion with Constant
Acceleration

An object with constant acceleration

has a constantly changing velocity. Its
velocity graph is linear; its position graph
is a parabola.

Vx

i t

Kinematic equations for motion with
constant acceleration:

(Vx)f = (Vx)i + ay At
xp=x;+ (vy); At + 2 a,(Ar)?
(Vx)f2 = (Vx)i2 + zax Ax

Grag I repr List of values
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A velocity-versus-time graph
plots velocity on the vertical axis
against time on the horizontal axis.

v (m/s)  Acceleration is the slope
of the velocity graph.
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Free Fall

Free fall is a special case of constant-
acceleration motion. The acceleration has
magnitude g = 9.80 m/s> and is always
directed vertically downward whether an
object is moving up or down.

P

V) V'\.

%
The velocity graph is
a straight line with a
slope of —9.80 m/s?.
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Learning Objectives After studying this chapter, you should be able to:

B Use motion diagrams to interpret motion. Conceptual
Question 2.3; Problems 2.1, 2.2, 2.59

B Use and interpret motion graphs. Conceptual Questions 2.5,
2.13; Problems 2.4, 2.18, 2.19, 2.22, 2.62

B Calculate the velocity of an object. Conceptual Question 2.9;
Problems 2.8, 2.15, 2.57

B Solve problems about an object in uniform motion.
Problems 2.9, 2.10, 2.11, 2.13, 2.58

Chapter Preview Stop to Think: B. The bicycle is moving to the
left, so the velocity vectors must point to the left. The speed is
increasing, so successive velocity vectors must get longer.

Stop to Think 2.1: D. The motion consists of two constant-velocity
phases, and the second one has a higher velocity. The correct graph has
two straight-line segments, with the second one having a steeper slope.

Stop to Think 2.2: B. The displacement is the area under a velocity-
versus-time graph. In all four cases, the graph is a straight line, so
the area under the graph is a rectangle. The area is the product of
the length and the height, so the largest displacement belongs to the
graph with the largest product of the length (the time interval, in s)
and the height (the velocity, in m/s).

Stop to Think 2.3: C. Consider the slope of the position-versus-
time graph. It starts out positive and constant, then decreases to zero.
Thus the velocity graph must start with a constant positive value,
then decrease to zero.

STOP TO THINK ANSWERS

B Calculate the acceleration of an object. Problems 2.25, 2.27,
2.32,2.33,2.72

B Determine and interpret the sign of acceleration. Conceptual
Questions 2.2, 2.8; Problem 2.50

B Use the problem-solving approach to solve problems of motion
with constant acceleration and free fall. Problems 2.36, 2.40,
2.41,2.47,2.52,2.75

Stop to Think 2.4: C. Acceleration is the slope of the velocity-
versus-time graph. The largest magnitude of the slope is at point C.

Stop to Think 2.5: B. The elevator is moving down, so v, <O0. It is
slowing down, so the magnitude of the velocity is decréasing. As
time goes on, the velocity graph should get closer to the origin. This
means that the acceleration is positive, and the slope of the graph is
positive.

Stop to Think 2.6: E. An acceleration of 1.2 m/s? corresponds to an
increase of 1.2 m/s every second. At this rate, the cruising speed of
6.0 m/s will be reached after 5.0 s.

Stop to Think 2.7: D. The final velocity will have the same magni-
tude as the initial velocity, but the velocity is negative because the
rock will be moving downward.

E Video Tutor Solution Chapter 2

QUESTIONS

Conceptual Questions

1. A person gets in an elevator on the ground floor and rides it to
the top floor of a building. Sketch a velocity-versus-time graph
for this motion.

2. a. Give an example of a vertical motion with a positive veloc-

ity and a negative acceleration.
b. Give an example of a vertical motion with a negative veloc-
ity and a negative acceleration.

3. Figure Q2.3 shows growth rings in a tree’s trunk. The wide

B0 and narrow rings correspond to years of fast and slow growth.
Think of the rings as a motion diagram for the tree’s growth.
If we define an axis as shown, with x measured out from the
center of the tree, use the appearance of the rings to sketch a
velocity-versus-time graph for the radial growth of the tree.

2 )

4. Sketch a velocity-versus-time graph for a rock that is thrown
straight upward, from the instant it leaves the hand until the
instant it hits the ground.

5. You are driving down the road at a constant speed. Another
car going a bit faster catches up with you and passes you.
Draw a position graph for both vehicles on the same set of
axes, and note the point on the graph where the other vehicle
passes you.

FIGURE Q2.3

Problem difficulty is labeled as | (straightforward) to lll (challenging).
Problems labeled Bl0 are of biological or medical interest.

The eText icon indicates when there is a video tutor solution

available for the chapter or for a specific problem.To launch
these videos, log into your eText through Mastering™ Physics or log
into the Study Area.



6. Figure Q2.6 shows the velocity-versus-
time graphs for two objects A and B.

Students Zach and Victoria are asked A

to tell stories that correspond to the

motion of the objects. Zach says, “The B +
graph could represent two cars travel-

ing in opposite directions that pass each

other.” Victoria says, “No, I think they =~ FIGURE Q2.6

could be two rocks thrown vertically from a bridge; rock A is
thrown upward and rock B is thrown downward.” Which stu-
dent, if either, is correct? Explain.

7. Certain animals are capable of running at great speeds; other
B0 animals are capable of tremendous accelerations. Speculate on

which would be more beneficial to a predator—large maximum
speed or large acceleration.

8. A ball is thrown straight up into the air. At each of the follow-
ing instants, is the ball’s acceleration a, equal to g, —g, 0, <g,
or >g?

a. Just after leaving your hand?
b. At the very top (maximum height)?
c. Just before hitting the ground?

9. Janelle stands on a balcony, two stories above Michael. She
throws one ball straight up and one ball straight down, but
both with the same initial speed. Eventually each ball passes
Michael. Which ball, if either, is moving faster when it passes
Michael? Explain.

Figure Q2.10 shows an object’s position-versus-time graph.
The letters A to E correspond to various segments of the motion
in which the graph has constant slope.

a. Write a realistic motion short story for an object that would

have this position graph.

b. In which segment(s) is the object at rest?

In which segment(s) is the object moving to the right?
d. Is the speed of the object during segment C greater than,
equal to, or less than its speed during segment E? Explain.

10.

o

x (m)

1(s)

18

15.
FIGURE Q2.10

11. Figure Q2.11 shows the position graph for an object moving
along the horizontal axis.
a. Write a realistic motion short story for an object that would
have this position graph.
b. Draw the corresponding velocity graph.

16.

FIGURE Q2.11

14.
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Questions

. Figure Q2.12 shows the position-versus-time graphs for two

objects, A and B, that are moving along the same axis.

a. At the instant 1 =1 s, is the speed of A greater than, less
than, or equal to the speed of B? Explain.

b. Do objects A and B ever have the same speed? If so, at what
time or times? Explain.

T T T T

o 1 2 3 4 5 F
FIGURE Q2.12 FIGURE Q2.13

. Figure Q2.13 shows a position-versus-time graph. At which

lettered point or points is the object

a. Moving the fastest? b. Moving to the left?

c. Speeding up? d. Slowing down?

e. Turning around?

Figure Q2.14 is the velocity-versus-time graph for an object
moving along the x-axis.

a. During which segment(s) is the velocity constant?

b. During which segment(s) is the object speeding up?
c. During which segment(s) is the object slowing down?
d. During which segment(s) is the object standing still?
e. During which segment(s) is the object moving to the right?
v, (m/s)
3<
N A
14 B
0 R R 1(s)
I 2 3 4 5N\6 7 10
™ c E
_2< D
-3
FIGURE Q2.14

Multiple-Choice Questions

| Figure Q2.15 shows the
position graph of a car travel-
ing on a straight road. At
which labeled instant is the
speed of the car greatest?

| Figure Q2.16 shows the

position graph of a car FIGURE 02.15
traveling on a straight road.
The velocity at instant 1 is 7
and the velocity V\

at instant 2 is 2 t

. positive, negative ‘

. positive, positive

FIGURE Q2.16

. negative, negative
. negative, zero
. positive, zero

mOOwp
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17.

18.

19.

20.

21.

22.

CHAPTER 2 Motion in One Dimension

| Figure Q2.17 shows an x (m)
object’s position-versus-time 40
graph. What is the velocity of 5
the object at 1 =6 s?

A. 067m/s B. 083m/s 20
C. 33 m/s D. 42 m/s 10
E. 25m/s
. . 0 T —1(s)
| The following options 0 5 10

describe the motion of four

cars A-D. Which car has the

largest acceleration?

A. Goes from0Om/sto 10m/sin5.0s

B. Goes from 0 m/s to 5.0 m/s in 2.0 s

C. Goes from 0 m/s to 20 m/s in 7.0 s

D. Goes fromOm/sto3.0m/sin1.0s

| A car is traveling at v, =20 m/s. The driver applies the
brakes, and the car slows with a, = —4.0 m/s% What is the
stopping distance?

A. 50m

B. 25m

C. 40m

D. 50m

II' Velocity-versus-time graphs for three drag racers are shown in
Figure Q2.20. At = 5.0 s, which car has traveled the farthest?

FIGURE Q2.17

A. Andy
B. Rachel
C. Carl
D. All have traveled the same distance

v (m/s) vy (m/s) vy (m/s)

40 40 40

| | |
0 t(s) 0+ Fr(s) 0+ F1(s)
0 Andy 5.0 0  Rachel 5.0 0 Carl 5.0
FIGURE Q2.20

| Which of the three drag racers in Question 20 had the
greatest acceleration at = 0 s?

A. Andy

B. Rachel

C. Carl

D. All had the same acceleration

[I' Chris is holding two softballs while standing on a balcony.
She throws ball 1 straight up in the air and, at the same instant,
releases her grip on ball 2, letting it drop over the side of the
building. Which velocity graph in Figure Q2.22 best represents
the motion of the two balls?

A W B.
1 1
t
b t
2
2
C. W 1 D. Y
B t
2
t
2 1

FIGURE Q2.22

23.

24.

25.

26.

27.

28.

I Suppose a plane accelerates from rest for 30 s, achieving a
takeoff speed of 80 m/s after traveling a distance of 1200 m
down the runway. A smaller plane with the same acceleration
has a takeoff speed of 40 m/s. Starting from rest, after what
distance will this smaller plane reach its takeoff speed?
A.300m B. 600m C. 900m D. 1200 m

I Figure Q2.24 shows a motion diagram with the clock
reading (in seconds) shown at each position. From t=9s
to =155 the object is at the same position. After that, it
returns along the same track. The positions of the dots for
t=16s are offset for clarity. Which graph best represents
the object’s velocity?

0 1 2 3 4 5.6 78 9twl5
° L] L] [ ] [ ] e © o oo
[ ] [ ] L] L] o o L] [ ]
23 22 21 20 19 18 17 16
A v B. v
/ ,¥,
- t —_—
C. » D. v
7ﬁt {
-1 t
FIGURE Q2.24

I Nate throws a ball straight up to Kayla, who is standing on a
balcony 3.8 m above Nate. When she catches it, the ball is still
moving upward at a speed of 2.8 m/s. With what initial speed
did Nate throw the ball?

A. 7.0 m/s B. 123 m/s

C. 9.1 m/s D. 10.6 m/s

| Starting from rest, a car takes 2.4 s to travel the first 15 m.
Assuming a constant acceleration, how long will it take the car
to travel the next 15 m?

A. 0.67s B. 1.0s C. 1.8s D. 3.65s

| The velocity-versus-time graph for a car driving down a
straight road is shown in Figure Q2.27. What is the acceleration
of the car during the period shown?

A. 1.0 m/s? B. 2.5m/s?
C. 3.8m/s? D. 5.0m/s’
vy (m/s)
15
10
5
0+ T T — 1(8)
| 2 4

FIGURE Q2.27

I The velocity-versus-time graph for a car driving down a
straight road is shown in Figure Q2.27. How far does the car
travel during the time interval from r =0sto = 4.0 s?

A. 10m B. 20m C. 40m D. 60m
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Problems

PROBLEMS

Section 2.1 Describing Motion

1. Il Figure P2.1 shows a motion diagram of a car traveling down

a street. The camera took one frame every second. A distance

scale is provided.

a. Use the scale to determine the x-value of the car at each dot.
Place your data in a table, similar to Table 2.1, showing each
position and the instant of time at which it occurred.

b. Make a graph of x versus #, using the data in your table.
Because you have data only at certain instants of time, your
graph should consist of dots that are not connected together.

1 frame per second
e e e eo®ee o o o

T T T T T T T — X
0 200 400 600 800 1000 1200

(m)

FIGURE P2.1

. | For each motion diagram in Figure P2.2, determine the sign

(positive or negative) of the position and the velocity.

(b)

~<

(© y

=
aal
@-d——Q-40
<!

FIGURE P2.2

. II' The position graph of Figure P2.3 shows a dog slowly sneak-

ing up on a squirrel, then putting on a burst of speed.

a. For how many seconds does the dog move at the slower
speed?

b. Draw the dog’s velocity-versus-time graph. Include a
numerical scale on both axes.

x (m)
6

4
2
0 1(s)

0 2 4 6 8 10
FIGURE P2.3

. II' A rural mail carrier is driving slowly, putting mail in mail-

boxes near the road. He overshoots one mailbox, stops, shifts

into reverse, and then backs up until he is at the right spot. The

velocity graph of Figure P2.4 represents his motion.

a. Draw the mail carrier’s position-versus-time graph. Assume
thatx=0matr=0s.

b. What is the position of the mailbox?

vy (m/s) v, (m/s)
3‘—: 31 —
21 | S
1

14 i 14 : I I —
0Or——T——F+—1—T11() 0 - + . + . —1(s)

2 4 6 8 10 2 4 6 3 1 2
=1+ i i —1+ 1
21 - 2 !

1

31 34 !
FIGURE P2.4 FIGURE P2.5

. II' For the velocity-versus-time graph of Figure P2.5:

a. Draw the corresponding position-versus-time graph. Assume
thatx=0matr=0s.

b. What is the object’s position at = 12 s?

c. Describe a moving object that could have these graphs.

. I Starting at 48th Street, Dylan rides his bike due east on

Meridian Road with the wind at his back. He rides for 20 min at

15 mph. He then stops for 5 min, turns around, and rides back to

48th Street; because of the headwind, his speed is only 10 mph.

a. How long does his trip take?

b. Assuming that the origin of his trip is at 48th Street, draw a
position-versus-time graph for his trip.

. ' An elevator in a high-rise building goes up and down at the

same speed. Starting at the ground floor, Rafael and Monica
ride up five floors, a vertical rise of 20 m. The elevator stops
for 10 s as Monica gets off. Rafael then goes back down two
floors. Rafael’s entire trip takes 24 s. Taking the origin to be
at the ground floor, draw position-versus-time and velocity-
versus-time graphs for Rafael’s trip.

. I A bicyclist has the position-versus-time graph shown in

Figure P2.8. What is the bicyclist’s velocity at =10 s, at
t=25s,and at r = 35 s?

x (m)
100

50

1(s)

10 20 30 40

FIGURE P2.8

Section 2.2 Uniform Motion

9.

10.

11.

12.

14.

| In major league baseball, the pitcher’s mound is 60 feet from
the batter. If a pitcher throws a 95 mph fastball, how much time
elapses from when the ball leaves the pitcher’s hand until the
ball reaches the batter?

| In college softball, the distance from the pitcher’s mound to
the batter is 43 feet. If the ball leaves the bat at 100 mph, how
much time elapses between the hit and the ball reaching the
pitcher?

II' Alan leaves Los Angeles at 8:00 AM to drive to San Fran-
cisco, 400 mi away. He travels at a steady 50 mph. Beth leaves
Los Angeles at 9:00 am and drives a steady 60 mph.

a. Who gets to San Francisco first?

b. How long does the first to arrive have to wait for the second?
II' Richard is driving home to visit his parents. 125 mi of the
trip are on the interstate highway where the speed limit is
65 mph. Normally Richard drives at the speed limit, but today
he is running late and decides to take his chances by driving at
70 mph. How many minutes does he save?

. ' In a 5.00 km race, one runner runs at a steady 12.0 km/h and

another runs at 14.5 km/h. How long does the faster runner
have to wait at the finish line to see the slower runner cross?
lll'In an 8.00 km race, one runner runs at a steady 11.0 km/h
and another runs at 14.0 km/h. How far from the finish line is
the slower runner when the faster runner finishes the race?
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15.

16.

CHAPTER 2 Motion in One Dimension

I Figure P2.15 shows actual data from Usain Bolt’s 2009
word-record run in the 100 m sprint. From this graph, estimate
his top speed in m/s and in mph.
x (m)

100 °

80 °

60 °

40 o

20 o

1(s)

0e T T T T T

2 4 6 8 10
FIGURE P2.15

I While running a marathon, a long-distance runner uses a

stopwatch to time herself over a distance of 100 m. She finds

that she runs this distance in 18 s. Answer the following by con-

sidering ratios, without computing her velocity.

a. If she maintains her speed, how much time will it take her to
run the next 400 m?

b. How long will it take her to run a mile at this speed?

Section 2.3 Instantaneous Velocity

17.

18.

BIO

19.

20.

| Figure P2.17 shows the x (m)
position graph of a particle. 20
a. Draw  the  particle’s

velocity graph for the 10
interval 0 s =t =4s.

b. Does this particle have a
turning point or points? If
so, at what time or times?

I A somewhat idealized graph of the speed of the blood in

the ascending aorta during one beat of the heart appears as in

Figure P2.18.

a. Approximately how far, in cm, does the blood move during
one beat?

b. Assume similar data for the motion of the blood in your
aorta, and make a rough estimate of the distance from your
heart to your brain. Estimate how many beats of the heart it
takes for blood to travel from your heart to your brain.

v (m/s)

0 f T T —1(s)
0 1 2 3 4

FIGURE P2.17

vy (m/s)

1.0 12
8

0.5 4
0 T T —1(8)

i 2 3\1
0+ f } — 1 (8) —4
0 020 040  0.60
FIGURE P2.18 FIGURE P2.19

Il A car starts from x; = 10 m at #; = 0 s and moves with the
velocity graph shown in Figure P2.19.

a. What is the car’s position att =2's, 3 s, and 4 s?

b. Does this car ever change

x (m)

direction? If so, at what 400

time?
I Figure P2.20 shows a graph 300
of actual position-versus-time 209
data for a particular type of

) 100

drag racer known as a “funny

”» 0+ ; . —1(s)
car. , . 0 2 4 6
a. Estimate the car’s velocity

at2.0s. FIGURE P2.20

b. Estimate the car’s velocity at 4.0 s.

Section 2.4 Acceleration

21.

22.

23.

24.

BIO

25.

26.

BIO

27.

BIO

28.

BIO

II' Figure P2.21 shows the velocity graph of a bicycle. Draw the
bicycle’s acceleration graph for the interval 0 s =7 =4s. Give
both axes an appropriate numerical scale.

v (m/s)
4
v, (m/s)

IV 4 6 8 10
—1(s)
2 4 -2

0+ T
0

FIGURE P2.21 FIGURE P2.22

Il We set the origin of a coordinate system so that the position
of a train is x =0 m at = 0 s. Figure P2.22 shows the train’s
velocity graph.

a. Draw position and acceleration graphs for the train.

b. Find the acceleration of the train at r = 3.0 s.

Il An object has the acceleration graph shown in Figure P2.23.
Its velocity at 1 = 0 s is v, = 2.0 m/s. Draw the object’s veloc-

ity graph.

FIGURE P2.23

II' Figure P2.18 showed data for the speed of blood in the aorta.
Determine the magnitude of the acceleration for both phases,
speeding up and slowing down.

I Figure P2.25 is a somewhat simplified velocity graph for
Olympic sprinter Carl Lewis starting a 100 m dash. Estimate
his acceleration during each of the intervals A, B, and C.

v, (m/s)
12
10
8 B

(=R A

— 1 (s)
4

o4
S}

FIGURE P2.25

| Small frogs that are good jumpers are capable of remarkable

accelerations. One species reaches a takeoff speed of 3.7 m/s in

60 ms. What is the frog’s acceleration during the jump?

| A Thomson’s gazelle can reach a speed of 13 m/sin 3.0's. A lion

can reach a speed of 9.5 m/s in 1.0 s. A trout can reach a speed of

2.8 m/s1in 0.12 s. Which animal has the largest acceleration?

' When striking, the pike, a A

predatory fish, can acceler-

ate from rest to a speed of

4.0m/sin0.11s.

a. What is the acceleration of
the pike during this strike?

b. How far does the pike
move during this strike?
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Section 2.5 Motion with Constant Acceleration Section 2.6 Solving One-Dimensional Motion Problems
29. I a. What constant acceleration, in ST units, must a car have to 37. 11 A driver has a reaction time of 0.50 s, and the maximum
go from zero to 60 mph in 10 s? deceleration of her car is 6.0 m/s% She is driving at 20 m/s
b. What fraction of g is this? when suddenly she sees an obstacle in the road 50 m in front of

c. How far has the car traveled when it reaches 60 mph? her. Can she stop the car in time to avoid a collision?
Give your answer both in ST units and in feet. 38. I Chameleons catch insects with their tongues, which they can

30. I When jumping, a flea rapidly extends its legs, reaching a B0 rapidly extend to great lengths. In a typical strike, the chame-

B0 takeoff speed of 1.0 m/s over a distance of 0.50 mm. leon’s tongue accelerates at a remarkable 250 m/s? for 20 ms,
a. What is the flea’s acceleration as it extends its legs? then travels at constant speed for another 30 ms. During this total
b. How long does it take the flea to leave the ground after it time of 50 ms, 1/20 of a second, how far does the tongue reach?

begins pushing off? 39. Il You’re driving down the highway late one night at 20 m/s

31. Il In a car crash, large accelerations of the head can lead to when a deer steps onto the road 35 m in front of you. Your reac-

B0 severe injuries or even death. A driver can probably survive an tion time before stepping on the brakes is 0.50 s, and the maxi-
acceleration of 50g that lasts for less than 30 ms, but in a crash mum deceleration of your car is 10 m/s%
with a 50g acceleration lasting longer than 30 ms, a driver is a. How much distance is between you and the deer when you
unlikely to survive. Imagine a collision in which a driver’s head come to a stop?
experienced a 50g acceleration. b. What is the maximum speed you could have and still not hit
a. What is the highest speed that the car could have had such the deer?

that the driver survived? 40. I Upon impact, bicycle helmets
b. What is the shortest survivable distance over which the driv-  Bl0 compress, thus lowering the poten- k.
er’s head could have come to rest? tially dangerous acceleration expe-

32. Il Light-rail passenger trains that provide transportation within rienced by the head. A new kind of
and between cities speed up and slow down with a nearly con- helmet uses an airbag that deploys
stant (and quite modest) acceleration. A train travels through from a pouch worn around the
a congested part of town at 5.0 m/s. Once free of this area, it rider’s neck. In tests, a headform
speeds up to 12 m/s in 8.0 s. At the edge of town, the driver wearing the inflated airbag is
again accelerates, with the same acceleration, for another 16 s dropped onto a rigid platform; the
to reach a higher cruising speed. What is the final speed? speed just before impact is 6.0 m/s.

33. Il A cross-country skier is skiing along at a zippy 8.0 m/s. She Upon impact, the bag compresses
stops pushing and simply glides along, slowing to a reduced its full 12.0 cm thickness, slowing the headform to rest. What is the
speed of 6.0 m/s after gliding for 5.0 m. What is the magnitude acceleration, in g’s, experienced by the headform? (An acceleration
of her acceleration as she slows? greater than 60g is considered especially dangerous.)

34. I A small propeller airplane can comfortably achieve a high ~ 41. Il A car is traveling at a steady 80 km/h in a 50 km/h zone.
enough speed to take off on a runway that is 1/4 mile long. A large, A police motorcycle takes off at the instant the car passes it,
fully loaded passenger jet has about the same acceleration from accelerating at a steady 8.0 m/s”.
rest, but it needs to achieve twice the speed to take off. What is the a. How much time elapses before the motorcycle is moving as
minimum runway length that will serve? Hint: You can solve this fast as the car?
problem using ratios without having any additional information. b. How far is the motorcycle from the car when it reaches this

35. I Formula One racers speed up much more quickly than speed?

normal passenger vehicles, and they also can stop in a much  42. [l The velocity-versus-time graph for the vertical jump of a green
shorter distance. A Formula One racer traveling at 90 m/s can BIO leathopper, a small insect, is shown in Figure P2.42. This insect

stop in a distance of 110 m. What is the magnitude of the car’s is unusual because it jumps with nearly constant acceleration.
acceleration as it slows during braking? a. Estimate the leafhopper’s acceleration.
36. I Figure P2.36 shows a velocity-versus-time graph for a par- b. About how far does it move during this phase of its jump?

ticle moving along the x-axis. At = 0 s, assume that x =0 m.
a. What are the particle’s position, velocity, and acceleration at

r=1.0s? vy (m/s)
b. What are the particle’s position, velocity, and acceleration at g oo’
t=3.05s? 0.8+ Pyl
®
1 %
) 0.6 L
v, (m/s) oo ®
44 7 )
0.4 o
' o%°
7 CJ
P d
2 027 o, o%"°
o ©
0.0 T T T T — 1 (ms)
0 1 2 3 4 5
T T — 1 (s)

0 ;
FIGURE P2.36 0 | 2 3 4 FIGURE P2.42



68

43.

CHAPTER 2 Motion in One Dimension

Il A simple model for a person running the 100 m dash is to
assume the sprinter runs with constant acceleration until reach-
ing top speed, then maintains that speed through the finish line.
If a sprinter reaches his top speed of 11.2 m/s in 2.14 s, what
will be his total time?

Section 2.7 Free Fall

44.

BIO

BIO

46.

BIO

47.

48.

BIO

49.

50.

. I Here’s an interesting challenge you

Il Scientists have investigated how quickly hoverflies start beat-

ing their wings when dropped both in complete darkness and

in a lighted environment. Starting from rest, the insects were

dropped from the top of a 40-cm-tall box. In the light, those

flies that began flying 200 ms after being dropped avoided hit-

ting the bottom of the box 80% of the time, while those in the

dark avoided hitting only 22% of the time.

a. How far would a fly have fallen in the 200 ms before it
began to beat its wings?

b. How long would it take for a fly to hit the bottom if it never
began to fly?

can give to a friend. Hold a $1 (or
larger!) bill by an upper corner. Have a
friend prepare to pinch a lower corner,
putting her fingers near but not touch-
ing the bill. Tell her to try to catch the
bill when you drop it by simply closing
her fingers. This seems like it should
be easy, but it’s not. After she sees that

you have released the bill, it will take -

her about 0.25 s to react and close her fingers—which is not

fast enough to catch the bill. How much time does it take for

the bill to fall beyond her grasp? The length of a bill is 16 cm.

Il Tn the preceding problem we saw that a person’s reaction

time is generally not quick enough to allow the person to catch

a $1 bill dropped between the fingers. The 16 cm length of the

bill passes through a student’s fingers before she can grab it if

she has a typical 0.25 s reaction time. How long would a bill
need to be for her to have a good chance of catching it?

| A gannet is a seabird that fishes by diving from a great height.

If a gannet hits the water at 32 m/s (which they do), what height

did it dive from? Assume that the gannet was motionless before

starting its dive.

lll' Steelhead trout migrate upriver to spawn. Occasionally

they need to leap up small waterfalls to continue their journey.

Fortunately, steelhead are remarkable jumpers, capable of leav-

ing the water at a speed of 8.0 m/s.

a. What is the maximum height that a steelhead can jump?

b. Leaving the water vertically at 8.0 m/s, a steelhead lands on
the top of a waterfall 1.8 m high. How long is it in the air?

Il In a circus act, an acrobat rebounds upward from the sur-
face of a trampoline at the exact moment that another acrobat,
perched 9.0 m above him, releases a ball from rest. While still
in flight, the acrobat catches the ball just as it reaches him. If
he left the trampoline with a speed of 8.0 m/s, how long is he in
the air before he catches the ball?

| A student at the top of a building of height / throws ball A

straight upward with speed v, and throws ball B straight down-

ward with the same initial speed.

a. Compare the balls’ accelerations, both direction and magni-
tude, immediately after they leave her hand. Is one accelera-
tion larger than the other? Or are the magnitudes equal?

b. Compare the final speeds of the balls as they reach the
ground. Is one larger than the other? Or are they equal?

S1.

BIO

52.

53.

54.

BIO

55.

E Watch Video Solution Problems 2.47 and 2.57

I Excellent human jumpers can leap straight up to a height of

110 cm off the ground. To reach this height, with what speed

would a person need to leave the ground?

I A football is kicked straight up into the air; it hits the ground

5.2 s later.

a. What was the greatest height reached by the ball? Assume it
is kicked from ground level.

b. With what speed did it leave the kicker’s foot?

Il In an action movie, the villain is rescued from the ocean by

grabbing onto the ladder hanging from a helicopter. He is so

intent on gripping the ladder that he lets go of his briefcase of

counterfeit money when he is 130 m above the water. If the

briefcase hits the water 6.0 s later, what was the speed at which

the helicopter was ascending?

I Spud Webb was, at 5 ft 8 in, one of the shortest basketball

players to play in the NBA. But he had an amazing vertical

leap; he could jump to a height of 1.1 m off the ground, so he

could easily dunk a basketball. For such a leap, what was his

“hang time”—the time spent in the air after leaving the ground

and before touching down again?

ll' A rock climber stands on top of a 50-m-high cliff overhang-

ing a pool of water. He throws two stones vertically downward

1.0 s apart and observes that they cause a single splash. The

initial speed of the first stone was 2.0 m/s.

a. How long after the release of the first stone does the second
stone hit the water?

b. What was the initial speed of the second stone?

c. What is the speed of each stone as it hits the water?

General Problems

56.

BIO

57.

58.

Il Actual velocity data for a lion pursuing prey are shown in
Figure P2.56. Estimate:

a. The initial acceleration of the lion.

b. The acceleration of the lion at 2 s and at 4 s.

c. The distance traveled by the lion between 0 s and 8 s.

v, (M/s)

15

0 1(s)
8

FIGURE P2.56

I A truck driver has a shipment of apples to deliver to a des-
tination 440 miles away. The trip usually takes him 8 hours.
Today he finds himself daydreaming and realizes 120 miles
into his trip that he is running 15 minutes later than his usual
pace at this point. At what speed must he drive for the remain-
der of the trip to complete the trip in the usual amount of
time?

II' Jenny and Alyssa are members of the cross-country
team. On a training run, Jenny starts off and runs at a con-
stant 3.8 m/s. Alyssa starts 15 s later and runs at a constant
4.0 m/s. At what time after Jenny’s start does Alyssa catch
up with Jenny?
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59.

60.

61.

62.

I Figure P2.59 shows the motion diagram, made at two frames
of film per second, of a ball rolling along a track. The track has
a 3.0-m-long sticky section.

a. Use the scale to determine the positions of the center of the
ball. Place your data in a table, similar to Table 2.1, showing
each position and the instant of time at which it occurred.

b. Make a graph of x versus ¢ for the ball. Because you have
data only at certain instants of time, your graph should con-
sist of dots that are not connected together.

c. What is the change in the ball’s position from t=0s to
r=1.0s?

d. What is the change in the ball’s position from = 2.0's to
t=4.0s?

e. What is the ball’s velocity before reaching the sticky section?

f. What is the ball’s velocity after passing the sticky section?

g. Determine the ball’s acceleration on the sticky section of the
track.

2 frames Sticky section
per second of track
t=0s / \

Meters
FIGURE P2.59

[I' In a 5000 m race, the athletes run 12% laps; each lap is 400 m.
Kara runs the race at a constant pace and finishes in 17.5 min.
Hannah runs the race in a blistering 15.3 min, so fast that she
actually passes Kara during the race. How many laps has Han-
nah run when she passes Kara?

I The takeoff speed for an Airbus A320

o : t(s) v, (m/s)
jetliner is 80 m/s. Velocity data measured ———————

during takeoff are as shown in the table. 0 0
a. What is the jetliner’s acceleration dur- 10 23
ing takeoff, in m/s? and in g’s? 20 46
b. At what time do the wheels leave the
30 69
ground? _

c. For safety reasons, in case of an aborted takeoff, the length
of the runway must be three times the takeoff distance. What
is the minimum length runway this aircraft can use?

il Does a real automobile have con-

. t(s) v, (mph

stant acceleration? Measured data for a L&

Porsche 944 Turbo at maximum accel- 0 0
eration are as shown in the table. 2 41
a. Convert the velocities to m/s, then 4 66
make a graph of velocity versus time.
Based on your graph, is the accelera- 6 83
tion constant? Explain. 8 97
b. Estimate how far the car traveled in 10 110

the first 10 s.

c. Draw a smooth curve through the points on your graph, then
use your graph to estimate the car’s acceleration at 2.0 s and
8.0 s. Give your answer in SI units. Hint: Remember that
acceleration is the slope of the velocity graph.

63.

64.

65.
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Problems

I Scientists have studied two v, (m/s)

species of sand lizards, the 20
Mojave fringe-toed lizard and 1(5)

the western zebra-tailed liz-
ard, to understand the extent
to which the different struc-
ture of the two species’ toes
is related to their preferred habitats—fine sand for the Mojave
lizard and coarse sand for the zebra-tailed lizard. Figure P2.63
shows a somewhat simplified velocity-versus-time graph for
the Mojave fringe-toed lizard.

a. Estimate the maximum acceleration of the lizard in both m/s?
and g’s.

b. Estimate its acceleration at # = 150 ms.

c. Estimate how far it travels in the first 50 ms.

Il You are driving to the grocery store at 20 m/s. You are 110

m from an intersection when the traffic light turns red. Assume

that your reaction time is 0.70 s and that your car brakes with

constant acceleration.

a. How far are you from the intersection when you begin to
apply the brakes?

b. What acceleration will bring you to rest right at the intersection?

c. How long does it take you to stop?

| 'When you blink your eye, the upper lid goes from rest with your

eye open to completely covering your eye in a time of 0.024 s.

a. Estimate the distance that the top lid of your eye moves
during a blink.

b. What is the acceleration of your eyelid? Assume it to be constant.

c. What is your upper eyelid’s final speed as it hits the bottom
eyelid?

' A bush baby, an African primate, is

capable of a remarkable vertical leap. The

bush baby goes into a crouch and extends
its legs, pushing upward for a distance of

0.16 m. After this upward acceleration, the

bush baby leaves the ground and travels

upward for 2.3 m. What is the acceleration
during the pushing-off phase? Give your

answer in m/s? and in g’s.

[l When jumping, a flea reaches a takeoff speed of 1.0 m/s

over a distance of 0.50 mm.

a. What is the flea’s acceleration during the jump phase?

b. How long does the acceleration phase last?

c. If the flea jumps straight up, how high will it go? (Ignore air
resistance for this problem; in reality, air resistance plays a
large role, and the flea will not reach this height.)

lI" Certain insects can achieve seem-

ingly impossible accelerations while

jumping. The click beetle acceler-
ates at an astonishing 400g over

a distance of 0.60 cm as it rapidly

bends its thorax, making the “click”

that gives it its name.

a. Assuming the beetle jumps straight up, at what speed does it
leave the ground?

b. How much time is required for the beetle to reach this speed?

c. Ignoring air resistance, how high would it go?

0.0 t (ms)
0 50 100 150 200 250

FIGURE P2.63
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CHAPTER 2 Motion in One Dimension

" A student standing on the ground throws a ball straight up.
The ball leaves the student’s hand with a speed of 15 m/s when
the hand is 2.0 m above the ground. How long is the ball in the
air before it hits the ground? (The student moves her hand out
of the way.)

" A rock is tossed straight up with a speed of 20 m/s. When it

returns, it falls into a hole 10 m deep.

a. What is the rock’s velocity as it hits the bottom of the hole?

b. How long is the rock in the air, from the instant it is released
until it hits the bottom of the hole?

lll' In springboard diving, the diver strides out to the end of

the board, takes a jump onto its end, and uses the resultant

spring-like nature of the board to help propel him into the
air. Assume that the diver’s motion is essentially vertical. He
leaves the board, which is 3.0 m above the water, with a speed

of 6.3 m/s.

a. How long is the diver in the air, from the moment he leaves
the board until he reaches the water?

b. What is the speed of the diver when he reaches the water?
Il Haley is driving down a straight highway at 75 mph. A con-
struction sign warns that the speed limit will drop to 55 mph in
0.50 mi. What constant acceleration (in m/s) will bring Haley to
this lower speed in the distance available?
lll A car starts from rest at a stop sign. It accelerates at 2.0 m/s>
for 6.0 seconds, coasts for 2.0 s, and then slows down at a rate of
1.5 m/s” for the next stop sign. How far apart are the stop signs?
' Chameleons can rapidly project their very long tongues to
catch nearby insects. The tongue of the tiny Rosette-nosed
chameleon has the highest acceleration of a body part of any
amniote (reptile, bird, or mammal) ever measured. In a some-
what simplified model of its tongue motion, the tongue, starting
from rest, first undergoes a constant-acceleration phase with an
astounding magnitude of 2500 m/s. This acceleration brings
the tongue up to a final speed of 5.0 m/s. It continues at this
speed for 22 ms until it hits its target.

a. How long does the acceleration phase last?

b. What is the total distance traveled by the chameleon’s
tongue?

' Heather and Jerry are standing on a bridge 50 m above a

river. Heather throws a rock straight down with a speed of 20

m/s. Jerry, at exactly the same instant of time, throws a rock

straight up with the same speed. Ignore air resistance.

a. How much time elapses between the first splash and the sec-
ond splash?

b. Which rock has the faster speed as it hits the water?

A Thomson’s gazelle can run at very high speeds, but its

acceleration is relatively modest. A reasonable model for the

sprint of a gazelle assumes an acceleration of 4.2 m/s> for 6.5 s,

after which the gazelle continues at a steady speed.

a. What is the gazelle’s top speed?

b. A human would win a very short race with a gazelle. The
best time for a 30 m sprint for a human runner is 3.6 s. How
much time would the gazelle take for a 30 m race?

c. A gazelle would win a longer race. The best time for a 200 m
sprint for a human runner is 19.3 s. How much time would
the gazelle take for a 200 m race?

E Watch Video Solution Problem 2.75

77. Il We’ve seen that a man’s higher initial acceleration means

B0 that he can outrun a horse in very short race. A simple—but

plausible—model for a sprint by a man and a horse uses these

assumptions: The man accelerates at 6.0 m/s2 for 1.8 s and then
runs at a constant speed. A horse accelerates at 5.0 m/s” but
continues accelerating for 4.8 s and then continues at a constant
speed. A man and a horse are competing in a 200 m race. The
man is given a 100 m head start, so he begins 100 m from the
finish line. How much time does the man take to complete the
race? How much time does the horse take? Who wins the race?

II' A pole-vaulter is nearly motionless as he clears the bar, set 4.2 m

above the ground. He then falls onto a thick pad. The top of the pad

is 80 cm above the ground, and it compresses by 50 cm as he comes
to rest. What is his acceleration as he comes to rest on the pad?

I A Porsche challenges a Honda to a 400 m race. Because the

Porsche’s acceleration of 3.5 m/s” is larger than the Honda’s

3.0 m/s’, the Honda gets a 100-m head start—it is only 300 m

from the finish line. Assume, somewhat unrealistically, that

both cars can maintain these accelerations the entire distance.

Who wins, and by how much time?

llll The minimum stopping distance for a car traveling at a speed

of 30 m/s is 60 m, including the distance traveled during the

driver’s reaction time of 0.50 s.

a. Draw a position-versus-time graph for the motion of the car.
Assume the car is at x; = 0 m when the driver first sees the
emergency situation ahead that calls for a rapid halt.

b. What is the minimum stopping distance for the same car
traveling at a speed of 40 m/s?

81. llll A rocket is launched straight up with constant acceleration.
Four seconds after liftoff, a bolt falls off the side of the rocket.
The bolt hits the ground 6.0 s later. What was the rocket’s
acceleration?

78.

79.

80.

MCAT-Style Passage Problems
Free Fall on Different Worlds

Objects in free fall on the earth have acceleration a, = —9.8 m/ s2.
On the moon, free-fall acceleration is approximately 1/6 of the accel-
eration on earth. This changes the scale of problems involving free
fall. For instance, suppose you jump straight upward, leaving the
ground with velocity v; and then steadily slowing until reaching zero
velocity at your highest point. Because your initial velocity is deter-
mined mostly by the strength of your leg muscles, we can assume
your initial velocity would be the same on the moon. But consider-
ing the final equation in Synthesis 2.1 we can see that, with a smaller
free-fall acceleration, your maximum height would be greater. The
following questions ask you to think about how certain athletic feats
might be performed in this reduced-gravity environment.
82. | If an astronaut can jump straight up to a height of 0.50 m on
earth, how high could he jump on the moon?
A. 12m B. 3.0m C. 3.6m D. 18 m
83. 1 On the earth, an astronaut can safely jump to the ground
from a height of 1.0 m; her velocity when reaching the ground
is slow enough to not cause injury. From what height could the
astronaut safely jump to the ground on the moon?
A. 24 m B. 6.0m C.72m D. 36 m
84. 1 On the earth, an astronaut throws a ball straight upward;
it stays in the air for a total time of 3.0 s before reaching the
ground again. If a ball were to be thrown upward with the same
initial speed on the moon, how much time would pass before it
hit the ground?
A. 73s B. 18s

C. 445 D. 108s



