Representing Motion
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LOOKING AHEAD »

Chapter Preview Describing Motion Numbers and Units
Each chapter starts with a preview outlining This series of images of a skier clearly Quantitative descriptions involve numbers, and
the major topics and what you’ll be learning shows his motion. Such visual depictions numbers require units. This speedometer gives
for each topic. are a good first step in describing motion. speed in mph and km/h.

LOOKING AHEAD =

7 X
e - = el
Each preview also looks back at an In this chapter, you'll learn to make motion You'll learn the units used in science, and
important past topic, with a question diagrams that provide a simplified view of you'll learn to convert between these and
to help refresh your memory. the motion of an object. more familiar units.

(c[o7.\M To introduce the fundamental concepts of motion and to review related basic mathematical principles.

LOOKING BACK « |

Trigonometry STOP TO THINK

In a previous course, you learned

mathematical relationships among 4, What is the lengt.h of the
the sides and the angles of triangles. § (] ‘b"fe,,l]dpe hypotenuse of this triangle?
% A. 6cm B. 8cm bem
In this course you'll use C. 10cm D. 12cm
these relationships to E. 14cm

. Opposite
analyze motion and related L

problems.




1.1 Motion: A First Look

11 Motion: A First Look

Motion is a theme that will appear in one form or another throughout this entire text.
You have a well-developed intuition about motion based on your experiences, but
we’ll find that some of the most important aspects of motion can be rather subtle.
We need to develop some tools to help us explain and understand motion, so rather
than jumping immediately into a lot of mathematics and calculations, this first chap-
ter focuses on visualizing motion and becoming familiar with the concepts needed to
describe a moving object.

One key difference between physics and other sciences is how we set up and
solve problems. We’ll often use a two-step process to solve motion problems. The
first step is to develop a simplified representation of the motion so that key elements
stand out. For example, the photo of the falcon at the start of the chapter allows us to
observe its position at many successive times. We will begin our study of motion by
considering this sort of picture. The second step is to analyze the motion with the
language of mathematics. The process of putting numbers on nature is often the
most challenging aspect of the problems you will solve. In this chapter, we will
explore the steps in this process as we introduce the basic concepts of motion.

Types of Motion

As a starting point, let’s define motion as the change of an object’s position or orienta-
tion with time. Examples of motion are easy to list. Bicycles, baseballs, cars, airplanes,
and rockets are all objects that move. The path along which an object moves, which
might be a straight line or might be curved, is called the object’s trajectory.

FIGURE 1.1 shows four basic types of motion that we will study in this text. In this
chapter, we will focus on the first type of motion in the figure, motion along a straight
line, or straight-line motion. In later chapters, we will learn about circular motion,
which is the motion of an object along a circular path; projectile motion, the motion of
an object through the air; and rotational motion, the spinning of an object about an axis.

FIGURE 1.1 Four basic types of motion.

Straight-line motion

FIGURE 1.2 Several frames from the
video of a car.
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Projectile motion Rotational motion
Making a Motion Diagram ‘$ .
= .
An easy way to study motion is to record a video of a moving object with a station- o=e
ary camera. A video camera takes images at a fixed rate, typically 30 images every
second. Each separate image is called a frame. As an example, FIGURE 1.2 shows T
several frames from a video of a car going past, with the camera in a fixed position. ‘e |
Not surprisingly, the car is in a different position in each frame.
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FIGURE 1.3 A motion diagram of the car Suppose we now edit the video by layering the frames on top of each other. We
shows all the frames simultaneously. end up with the picture in FIGURE 1.3. This composite image, showing an object’s

positions at several equally spaced instants of time, is called a motion diagram. As
:.T simple as motion diagrams seem, they will turn out to be powerful tools for analyz-

= e =Y
5 B ing motion.

T r— Now let.s take our camera out into the.worlfi and make some motion diagrams.

between each image and the next. The following table illustrates how a motion diagram shows important features of

different kinds of motion.

Examples of motion diagrams

Images that are equally spaced indicate an
g g g g object moving with constant speed.

A skateboarder rolling down the sidewalk.

An increasing distance between the images
ﬁ g % shows that the object is speeding up.

A sprinter starting the 100 meter dash.

ﬁ % % A decreasing distance between the images

shows that the object is slowing down.

A car stopping for a red light.

) A more complex motion diagram shows
® 9 @ changes in speed and direction.

A basketball free throw.

We have defined several concepts (constant speed, speeding up, and slowing
down) in terms of how the moving object appears in a motion diagram. These are
called operational definitions, meaning that the concepts are defined in terms of a
particular procedure or operation. For example, we could answer the question Is the
airplane speeding up? by checking whether the images in the plane’s motion dia-
gram are getting farther apart. Many of the concepts in physics will be introduced as
operational definitions. This reminds us that physics is an experimental science.

Which car is going faster, A or B? Assume there are equal intervals of time between the
frames of both videos.

o, e, T,

Car A Car B

» Each chapter in this text has several Stop fo Think questions. These ques-
tions are designed to see if you’ve understood the basic ideas that have just been
presented. The answers are given at the end of the chapter, but you should make a
serious effort to think about these questions before turning to the answers. <



1.2 Models and Modeling

The real world is messy and complicated. Our goal in studying physics is to brush
aside many of the real-world details in order to discern patterns that occur over and
over. For example, a swinging pendulum, a vibrating guitar string, a sound wave,
and jiggling atoms in a crystal are all very different—yet they share a common core
characteristic: Each is an example of an oscillating system, something that moves
back and forth around an equilibrium position. If we focus on understanding a very
simple oscillating system, such as a block (generically, a “mass”) attached to a
spring, we’ll automatically understand quite a bit about the many real-world exam-
ples of oscillations.

Stripping away the details to focus on essential features is a process called model-
ing. A model is a highly simplified picture of reality, but one that still captures the
essence of what we want to study. Thus a mass attached to a spring is a simple but
realistic model of many oscillating systems.

Models allow us to make sense of complex situations by providing a framework
for thinking about them. One could go so far as to say that developing and testing
models is at the heart of the scientific process. Albert Einstein once said, “Physics
should be as simple as possible—but not simpler.” We want to find the simplest
model that allows us to understand the phenomenon we’re studying, but we can’t
make the model so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this text; they’ll be one of our
most important thinking tools. These models will be of two types:

Descriptive models: What are the essential characteristics and properties of a
phenomenon? How do we describe it in the simplest possible terms? For exam-
ple, the mass-on-a-spring model of an oscillating system is a descriptive model.
Explanatory models: Why do things happen as they do? Explanatory models,
based on the laws of physics, have predictive power. They allow us to test—
against experimental data—whether a model provides an adequate explanation of
our observations. For example, the charge model that we will introduce in Chap-
ter 20 helps us explain and predict a wide range of experimental outcomes related
to electric forces.

When we solve physics problems, one of the most important steps is choosing an
appropriate model for the system we are studying. In the worked examples in this
text, in the first “Strategize” step, we’ll point out the model being used, when
appropriate.

The Particle Model

For many objects, the motion of the object as a whole is not influenced by the details
of the object’s size and shape. To describe the object’s motion, all we really need to
keep track of is the motion of a single point: You could imagine looking at the
motion of a dot painted on the side of the object.

In fact, for the purposes of analyzing the motion, we can often consider the object
as if it were just a single point. We can also treat the object as if all of its mass were
concentrated into this single point. An object that can be represented as a mass at a
single point in space is called a particle.

If we treat an object as a particle, we can represent the object in each frame of a
motion diagram as a simple dot. FIGURE 1.4 shows how much simpler motion dia-
grams appear when the object is represented as a particle. Note that the dots have
been numbered 0, 1, 2, . . . to tell the sequence in which the frames were exposed.
These diagrams still convey a complete understanding of the object’s motion.

In representing the car in Figure 1.4 as a particle, we have discarded many of the
details of the car, such as the shape of its body and the motion of its wheels, which
are unimportant in understanding its overall motion. In other words, we have devel-
oped a model for moving objects, the particle model, that allows us to see

1.2 Models and Modeling

FIGURE 1.4 Simplifying a motion
diagram using the particle model.

(a) Motion diagram of a car stopping

(b) Same motion diagram using the
particle model

The same amount of time elapses

between each frame and the next.
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F,

0 1.
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A single dot is
used to represent
the object.

Numbers show the
order in which the

frames were taken.
E A video to support a section’s topic
is embedded in the eText.

Video Figure 1.4
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FIGURE 1.5 The particle model for two
falling objects.

E)  eo

falling rock and a »*

& el
By using the particle ~ # %
model, we see that a " ;
diver have exactly the
same motion diagram. %
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FIGURE 1.6 Describing your position.

Origin (post office)
Direction Your position

W~——>E T3 P

4 miles

This gauge’s vertical scale measures
the depth of snow when it falls. It has a
natural origin at the level of the road.

connections that are very important but that are obscured or lost by examining all the
parts of an extended, real object. Consider the motion of the rock and the diver
shown in FIGURE 1.5. These two very different objects have exactly the same motion
diagram. As we will see, all objects falling under the influence of gravity move in
exactly the same manner if no other forces act. The simplification of the particle
model has revealed something about the physics that underlies both of these
situations.

SRR Three motion diagrams 5 e B. 0@ C oe

are shown. Which is a dust particle settling 1@
to the floor at constant speed, which is a ball ce 1@
dropped from the roof of a building, and which le
is a descending rocket slowing to make a soft 3@ 2e
i 2
landing on Mars? . e
4@
4@ e
Y
50 5@ 5@

1.3 Position and Time: Putting
Numbers on Nature

To develop our understanding of motion further, we need to be able to make quanti-
tative measurements: We need to use numbers. As we analyze a motion diagram, it
is useful to know where the object is (its position) and when the object was at that
position (the time). We’ll start by considering the motion of an object that can move
only along a straight line. Examples of this one-dimensional or “1-D” motion are a
car moving along a long, straight road; an airplane taxiing down a runway; and an
elevator moving up and down a shaft.

Position and Coordinate Systems

Suppose you are driving along a long, straight country road, as in FIGURE 1.6, and
your friend calls and asks where you are. You might reply that you are 4 miles east
of the post office, and your friend would then know just where you were. Your loca-
tion at a particular instant in time (when your friend phoned) is called your position.
Notice that to know your position along the road, your friend needed three pieces of
information. First, you had to give her a reference point (the post office) from which
all distances are to be measured. We call this fixed reference point the origin. Sec-
ond, she needed to know how far you were from that reference point or origin—in
this case, 4 miles. Finally, she needed to know which side of the origin you were on:
You could be 4 miles to the west of it or 4 miles to the east.

We will need these same three pieces of information in order to specify any
object’s position along a line. We first choose our origin, from which we measure
the distance to the object. The position of the origin is arbitrary, and we are free to
place it where we like. Usually, however, there are certain points (such as the well-
known post office) that are more convenient choices than others.

In order to specify how far our object is from the origin, we lay down an imagi-
nary axis along the line of the object’s motion. Like a ruler, this axis is marked off in
equally spaced divisions of distance, perhaps in inches, meters, or miles, depending
on the problem at hand. We place the zero mark of this ruler at the origin, allowing
us to locate the position of our object by reading the ruler mark where the object is.

Finally, we need to be able to specify which side of the origin our object is on. To
do this, we imagine the axis extending from one side of the origin with increasing
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positive markings; on the other side, the axis is marked with increasing negative
numbers. By reporting the position as either a positive or a negative number, we
know on what side of the origin the object is.

These elements—an origin and an axis marked in both the positive and negative
directions—can be used to unambiguously locate the position of an object. We call
this a coordinate system. We will use coordinate systems throughout this text, and
we will soon develop coordinate systems that can be used to describe the positions
of objects moving in more complex ways than just along a line. FIGURE 1.7 shows a
coordinate system that we can use to locate various objects along the country road
discussed earlier.

Although our coordinate system works well for describing the positions of
objects located along the axis, our notation is somewhat cumbersome because we
keep needing to say things like “the car is at position +4 miles.” A better notation,
and one that will become particularly important when we study motion in two
dimensions, is to use a symbol such as x or y to represent the position along the axis.
Then we can say “the cow is at x = —5 miles.” The symbol that represents a position
along an axis is called a coordinate. The introduction of symbols to represent posi-
tions (and, later, velocities and accelerations) also allows us to work with these
quantities mathematically.

FIGURE 1.8 shows how we would set up a coordinate system for a sprinter running
a 50 meter race (we use the standard abbreviation “m” for meters). For horizontal
motion like this we usually use the coordinate x to represent the position.

FIGURE 1.8 A coordinate system for a 50 meter race.

This is the symbol, or coordinate, used
to represent positions along the axis. -,

Finish

N The units in which x
0 10 20 30 40 50

"""" is measured go here.

Positive values of x .=
extend to the right.

Motion along a straight line need not be horizontal. As shown in FIGURE 1.9, a
rock falling vertically downward and a skier skiing down a straight slope are also
examples of straight-line or one-dimensional motion.

Time
The pictures in Figure 1.9 show the position of an object at just one instant of time.
But a full motion diagram represents how an object moves as time progresses. So
far, we have labeled the dots in a motion diagram by the numbers 0, 1, 2, . . . to indi-
cate the order in which the frames were taken. But to fully describe the motion, we
need to indicate the time, as read off a clock or a stopwatch, at which each frame of
a video was made. This is important, as we can see from the motion diagram of a
stopping car in FIGURE 1.10. If the frames were taken 1 second apart, this motion dia-
gram shows a leisurely stop; if 1/10 of a second apart, it represents a screeching halt.
For a complete motion diagram, we thus need to label each frame with its corre-
sponding time (symbol 7) as read off a clock. But when should we start the clock?
Which frame should be labeled # = 0? This choice is much like choosing the origin
x =0 of a coordinate system: You can pick any arbitrary point in the motion and
label it “# = 0 seconds.” This is simply the instant you decide to start your clock or
stopwatch, so it is the origin of your time coordinate. A video frame labeled
“t = 4 seconds” means it was taken 4 seconds after you started your clock. We typi-
cally choose t = 0 to represent the “beginning” of a problem, but the object may
have been moving before then.

FIGURE 1.7 The coordinate system used
to describe objects along a country road.

The post office defines the
zero, or origin, of the
coordinate system. "
¥
T %?;l—l—
2 374 5miles

—6+5-4-3-2-1 0 1

Your car is at
position +4 miles.

This cow is at
position —5 miles.

FIGURE 1.9 Examples of one-dimensional
motion.

For vertical motion, we’ll
use the coordinate y.

y (feet) Positive values of y
extend upward.

8 .

7 For motion along a

6 straight slope, we’ll

51 0 use the coordinate x.

4 - B

3 20 ¥
RS x (m)

%_ . 40

0- Positive values of x

extend to the right.

FIGURE 1.10 Is this a leisurely stop or a
screeching halt?

([ ] [ [ J e oo
0 1 2 3 45
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FIGURE 1.11 The motion diagram of a car
that travels at constant speed and then
brakes to a halt.

If we’re interested in the entire
------ motion of the car, we assign
the time 7 = 0 s to this point.
>
t=0s 1s 2s 3s 4s 5s 6s7s 8s
[ ] [ ] [ ] [ ] [ ] e o oo

Car starts braking here

t=0s 1s 2s3s 4
[ J [ ] [ ] [ J [ ] [ ] [ N J
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If we’re interested in only the braking part of
the motion, we assign ¢ = 0 s here.

FIGURE 1.12 Sam undergoes a displace-
ment Ax from position x; to position x;.

© This is Sam’s
£ displacement A x.
2| Start x; x End
\
12th Street | — )
T T T — x (ft)
0 50 100 150

FIGURE 1.13 A displacement is a signed
quantity. Here Ax is a negative number.

A final position to the left of the initial
position gives a negative displacement.

& Vine

2

12th Street

T — x (ft)
50 100 150

FIGURE 1.14 The motion diagram of a
bicycle moving to the right at a constant
speed.

Os 1s 2s 3s 4s 5s 65

[ ] [ ] [ ] [ ] [ ] [ [
T T T T T T T x (ft)
0 20 40 60 80 100 120

Initial position x; Final position x¢

To illustrate, FIGURE 1.11 shows the motion diagram for a car moving at a constant
speed and then braking to a halt. Two possible choices for the frame labeled r = 0
seconds are shown; our choice depends on what part of the motion we’re interested
in. Each successive position of the car is then labeled with the clock reading in sec-
onds (abbreviated by “s”).

Changes in Position: Displacement

Now that we’ve seen how to measure position and time, let’s return to the problem
of motion. To describe motion we’ll need to measure the changes in position that
occur with time. Consider the following:

Sam is standing 50 feet (ft) east of the corner of 12th Street and Vine. He then
walks to a second point 150 ft east of Vine. What is Sam’s change of position?

FIGURE 1.12 shows Sam’s motion on a map. We’ve placed a coordinate system on the
map, using the coordinate x. We are free to place the origin of our coordinate system
wherever we wish, so we have placed it at the intersection. Sam’s initial position is
then at x; = 50 ft. The positive value for x; tells us that Sam is east of the origin.

» We will label special values of x or y with subscripts. The value at the
start of a problem is usually labeled with a subscript “i,” for initial, and the value
at the end is labeled with a subscript “f,” for final. For cases having several spe-

cial values, we will usually use subscripts “1,” “2,” and so on. <

Sam’s final position is x; = 150 ft, indicating that he is 150 ft east of the origin.
You can see that Sam has changed position, and a change of position is called a
displacement. His displacement is the distance labeled Ax in Figure 1.12. The
Greek letter delta (A) is used in math and science to indicate the change in a quan-
tity. Thus Ax indicates a change in the position x.

» Ax is a single symbol. You cannot cancel out or remove the A in alge-
braic operations. «

To get from the 50 ft mark to the 150 ft mark, Sam clearly had to walk 100 ft, so
the change in his position—his displacement—is 100 ft. We can think about dis-
placement in a more general way, however. Displacement is the difference between a
final position x¢ and an initial position x;. Thus we can write

Ax = x;— x; = 150 ft — 50 ft = 100 ft

»A general principle, used throughout this text, is that the change in any
quantity is the final value of the quantity minus its initial value. <

Displacement is a signed quantity, that is, it can be either positive or negative. If,
as shown in FIGURE 1.13, Sam’s final position x; had been at the origin instead of the
150 ft mark, his displacement would have been

Ax =x;—x; =01t — 50 ft = =50 ft

The negative sign tells us that he moved to the left along the x-axis, or 50 ft west.

Changes in Time

A displacement is a change in position. In order to quantify motion, we’ll need to
also consider changes in fime, which we call time intervals. We’ve seen how we can
label each frame of a motion diagram with a specific time, as determined by our
stopwatch. FIGURE 1.14 shows the motion diagram of a bicycle moving at a constant
speed, with the times of the measured points indicated.

The displacement between the initial position x; and the final position x; is

Ax = x;— x; = 120 ft — 0 ft = 120 ft
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Similarly, we define the time interval between these two points to be
At=t;—t;,=6s—0s=6s

A time interval A¢ measures the elapsed time as an object moves from an
initial position x; at time # to a final position x; at time %. Note that, unlike Ax, At
is always positive because #; is always greater than ;.

How long a ride?

Emily is enjoying a bicycle ride on a country road that runs east-
west past a water tower. At noon, Emily is 3 miles (mi) east of
the water tower. A half-hour later, she is 2 mi west of the water
tower. What is her displacement during that half-hour?

STRATEGIZE We will use the particle model to represent Emily.
She is riding along a straight east-west road, so we will make use
of a one-dimensional coordinate system to describe her motion.

PREPARE Although it may seem like overkill for such a simple
problem, you should start by making a drawing, like the one
in FIGURE 1.15, with the x-axis along the road. We choose our

FIGURE 1.15 A drawing of Emily’s motion.

Start
Ax X

—x (mi)

coordinate system so that increasing x means moving to the east.
Distances are measured with respect to the water tower, so it is
a natural origin for the coordinate system. Once the coordinate
system is established, we can show Emily’s initial and final posi-
tions and her displacement between the two.

SOLVE We've specified values for Emily’s initial and final posi-
tions in our drawing. We can thus compute her displacement:

Ax=x—x;=(—2mi) — (3mi) = =5 mi

ASSESS Once we’ve completed the solution to the problem, we
need to go back to see if it makes sense. Emily is moving to the
west, so we expect her displacement to be negative—and it is.
We can see from our drawing in Figure 1.15 that she has moved
5 miles from her starting position, so our answer seems reason-
able. As part of the Assess step, we also check our answers to see
if they make physical sense. Emily travels 5 miles in a half-hour,
quite a reasonable pace for a cyclist.

> All of the numerical examples in the text are worked out with the same
four-step process: Strategize, Prepare, Solve, Assess. It’s tempting to cut corners,
especially for the simple problems in these early chapters, but you should take the
time to do all of these steps now, to practice your problem-solving technique. We’ll
have more to say about our general problem-solving approach in Chapter 2. <

Sarah starts at a positive position along the x-axis. She then
undergoes a negative displacement. Her final position

A. Is positive. B. Is negative. C. Could be either positive or negative.

1.4 Velocity

We all have an intuitive sense of whether something is moving very fast or just cruis-
ing slowly along. To make this intuitive idea more precise, let’s start by examining the
motion diagrams of some objects moving along a straight line at a constant speed,
objects that are neither speeding up nor slowing down. This motion at a constant speed
is called uniform motion. As we saw for the skateboarder in Section 1.1, for an object
in uniform motion, successive frames of the motion diagram are equally spaced, so the
object’s displacement Ax is the same between successive frames.

To see how an object’s displacement between successive frames is related to its

FIGURE 1.16 Motion diagrams for a car
and a bicycle.

During each second, the car moves
twice as far as the bicycle. Hence the
car is moving at a greater speed.

0s q Is 2s 3s
speed, consider the motion diagrams of a bicycle and a car, traveling along the same =~ @==——>-o ° ® Car
street as shown in FIGURE 1.16. Clearly the car is moving faster than the bicycle: In = o5 %15 25 35
any | second time interval, the car undergoes a displacement Ax = 40 ft, while the @®=»>® ® @ Bicycle

— x (fo)
bicycle’s displacement is only 20 ft. 0 20 40 60 80

100 120
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The greater the distance traveled by an object in a given time interval, the greater
its speed. This idea leads us to define the speed of an object as

distance traveled in a given time interval
speed = — (1.1)
time interval

Speed of an object in uniform motion

For the bicycle, this equation gives

20 ft ft
speed = ——=20—
ls S

while for the car we have

40 ft ft
speed = —— =40 —
1s S

The speed of the car is twice that of the bicycle, which seems reasonable.

» The division gives units that are a fraction: ft/s. This is read as “feet per
second,” just like the more familiar “miles per hour.” «

FIGURE 1.17 Two bicycles traveling at the

To fully characterize the motion of an object, we must specify not only the
same speed, but with different velocities.

object’s speed but also the direction in which it is moving. FIGURE 1.17 shows the

Bike 1 is moving Bike 2 is moving motion diagrams of two bicycles traveling at 20 ft/s. The two bicycles have the same
to the right. to the left. speed, but something about their motion is different—the direction of their motion.
0s 1s 2s 3s 4s Ss 65 The “distance traveled” in Equation 1.1 doesn’t capture any information about

— e o o o e Bike1 the direction of travel. But we’ve seen that the displacement of an object does con-
6s S5s 4s 3s 2s 1s40s tain this information. We can introduce a new quantity, the velocity, as

[ ] [ ] ° ° [ ] ®<4—® Bike2

T T T T T T T x (ft) 5

0 20 40 60 80 100 120 .. _ displacement _ Ax

velocity = —————— (1.2)

time interval At
Velocity of a moving object

The velocity of bicycle 1 in Figure 1.17, computed using the 1 second time inter-
val between the r = 0 s and 7 = 1 s positions, is

Ax  x;— X 20 ft — O ft ft
Y At 1s—0s Is S

while the velocity of bicycle 2, during the same time interval, is

Ax X1 — Xg 100 ft — 120 ft ft
y=—"= = = -20—
At 1s—0s ls S

» We have used x for the position at time = 0 seconds and x; for the
position at time ¢t = 1 second. The subscripts serve the same role as before—
identifying particular positions—but in this case the positions are identified by
the time at which each position is reached. «

The two velocities have opposite signs because the bicycles are traveling in oppo-
site directions. Speed measures only how fast an object moves, but velocity tells
us both an object’s speed and its direction. In this text, we’ll use a positive velocity
to indicate motion to the right or, for vertical motion, upward. We’ll use a negative
velocity for an object moving to the left, or downward.

» Learning to distinguish between speed, which is always a positive num-
ber, and velocity, which can be either positive or negative, is one of the most
important tasks in the analysis of motion. «
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The velocity as defined by Equation 1.2 is actually what is called the average
velocity. On average, over each 1 s interval bicycle 1 moves 20 ft, but we don’t know
if it was moving at exactly the same speed at every moment during this time interval.
In Chapter 2, we’ll develop the idea of instantaneous velocity, the velocity of an
object at a particular instant in time. Since our goal in this chapter is to visualize
motion with motion diagrams, we’ll somewhat blur the distinction between average
and instantaneous quantities, refining these definitions in Chapter 2.

The “Per” in Miles Per Hour

The units for speed and velocity are a unit of distance, such as feet, meters, or miles,
divided by a unit of time, such as seconds or hours. Thus we could measure velocity
in units of mi/h (or mph) or m/s, pronounced “miles per hour” or “meters per sec-
ond.” The word “per” will often arise in physics when we consider the ratio of two
quantities. What do we mean, exactly, by “per”?

If a car moves with a speed of 23 m/s, we mean that it travels 23 meters for each sec-
ond of elapsed time. The word “per” thus associates the number of units in the numerator
(23 m) with one unit of the denominator (1 s). We’ll see many other examples of this
idea as the text progresses. You may already know a bit about density; you can look up
the density of gold and you’ll find that it is 19.3 g/cm® (“grams per cubic centimeter”).
This means that there are 19.3 grams of gold for each cubic centimeter of the metal.

Finding the speed of a seabird @

Albatrosses are seabirds that spend most of their lives flying over
the ocean looking for food. With a stiff tailwind, an albatross can
fly at high speeds. Satellite data on one particularly speedy alba-
tross showed it 60 miles east of its roost at 3:00 pm and then, at
3:15 pm, 80 miles east of its roost. What was its velocity?
STRATEGIZE We will assume that the albatross is flying at a
constant speed; that is, it is in uniform motion. Using the particle
model, we can represent its motion on a coordinate system.
PREPARE The statement of the problem provides us with a
natural coordinate system: We can measure distances with
respect to the roost, with distances to the east as positive. With
this coordinate system, the motion of the albatross appears as in
FIGURE 1.18. The motion takes place between 3:00 and 3:15, a

FIGURE 1.18 The motion of an albatross at sea.

Start End

Roost Xi Ax Xp
° Te—>e

time interval of 15 minutes. If we want our final velocity to be
in the familiar units of miles per hour, or mph, we need this time
interval in hours (abbreviated “h”). So we make the conversion
15 min = 0.25 h.

soLVE We know the initial and final positions, and we know the
time interval, so we can calculate the velocity:

_&_xf—xi_ 20 mi

"TAr 025h 025h

= 80 mph

AsSESS The velocity is positive, which makes sense because
Figure 1.18 shows that the motion is to the right. A speed of
80 mph is certainly fast, but the problem said it was a “particu-
larly speedy” albatross, so our answer seems reasonable. (Indeed,
albatrosses have been observed to fly at such speeds in the very
fast winds of the Southern Ocean. This problem is based on real
observations, as will be our general practice in this text.)

T T T T T T X (ml)

0 20 40 60 80 100

Jane starts from her house to take a stroll in her neighborhood.
After walking for 2 hours at a steady pace, she has walked 4 miles and is 2 miles
from home. For this time interval, what was her speed?

A. 4 mph B. 3 mph C. 2 mph D. 1 mph

1.5 A Sense of Scale: Significant Figures,
Scientific Notation, and Units

Physics attempts to explain the natural world, from the very small to the exceedingly
large. And in order to understand our world, we need to be able to measure quanti-
ties both minuscule and enormous. A properly reported measurement has three

13
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FIGURE 1.19 The precision of a measure-
ment depends on the instrument used to
make it.
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This ruler has a precision of 1 mm.

These calipers have a precision of 0.01 mm.

Walter Davis’s best long jump on this
day was reported as 8.24 m.This implies
that the actual length of the jump was
between 8.235 m and 8.245 m, a spread
of only 0.01 m, which is 1 cm. Does this
claimed accuracy seem reasonable?

elements. First, we can measure our quantity with only a certain precision. To make
this precision clear, we need to make sure that we report our measurement with the
correct number of significant figures.

Second, writing down the really big and small numbers that often come up in
physics can be awkward. To avoid writing all those zeros, scientists use scientific
notation to express numbers both big and small.

Finally, we need to choose an agreed-upon set of units for the quantity. For speed,
common units include meters per second and miles per hour. For mass, the kilogram
is the most commonly used unit. Every physical quantity that we can measure has an
associated set of units.

Measurements and Significant Figures

When we measure any quantity, such as the length of a bone or the weight of a speci-
men, we can do so with only a certain precision. If you make a measurement with the
ruler shown in FIGURE 1.19, you probably can’t be more accurate than about + 1 mm, so
the ruler has a precision of 1 mm. The digital calipers shown can make a measurement
to within £0.01 mm, so it has a precision of 0.01 mm. The precision of a measure-
ment can also be affected by the skill or judgment of the person performing the mea-
surement. A stopwatch might have a precision of 0.001 s, but, due to your reaction
time, your measurement of the time of a sprinter would be much less precise.

It is important that your measurement be reported in a way that reflects its actual
precision. Suppose you use a ruler to measure the length of a particular frog. You judge
that you can make this measurement with a precision of about 1 mm, or 0.1 cm. In this
case, the frog’s length should be reported as, say, 6.2 cm. We interpret this to mean that
the actual value falls between 6.15 cm and 6.25 cm and thus rounds to 6.2 cm. If you
reported the frog’s length as simply 6 cm, you would be saying less than you know;
you would be withholding information. If you reported the number as 6.213 cm, how-
ever, anyone reviewing your work would interpret this to mean that the actual length
falls between 6.2125 cm and 6.2135 cm, a precision of 0.001 cm. In this case, you
would be claiming to have more information than you really possessed.

The way to state your knowledge precisely is through the proper use of significant
figures. You can think of a significant figure as a digit that is reliably known. A mea-
surement such as 6.2 cm has two significant figures, the 6 and the 2. The next deci-
mal place—the hundredths—is not reliably known and is thus not a significant
figure. Similarly, a time measurement of 34.62 s has four significant figures, imply-
ing that the 2 in the hundredths place is reliably known.

When we perform a calculation such as adding or multiplying two or more mea-
sured numbers, we can’t claim more accuracy for the result than was present in the
initial measurements. Determining the proper number of significant figures is straight-
forward, but there are a few definite rules to follow. We will often spell out such tech-
nical details in what we call a “Tactics Box.” A Tactics Box is designed to teach you
particular skills and techniques. Each Tactics Box will include the PZ] icon to designate
exercises in the Student Workbook that you can use to practice these skills.

TACTICS i ianifi i

Ll Using significant figures

©® When you multiply or divide several numbers, or when you take roots,
the number of significant figures in the answer should match the num-
ber of significant figures of the least precisely known number used in the
calculation:

Three significant figures

373 X5.7=21
L2 Answer should have the lower of
the two, or two significant figures.
Continued

Two significant figures
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® When you add or subtract several numbers, the number of decimal places
in the answer should match the smallest number of decimal places of any

number used in the calculation:

18.54 — Two decimal places
+106.6 — One decimal place

....... Answer should have the lower of

the two, or one decimal place.

© Exact numbers have no uncertainty and, when used in calculations, do not
change the number of significant figures of measured numbers. Examples
of exact numbers are 77 and the number 2 in the relation d = 2r between a

circle’s diameter and radius.

There is one notable exception to these rules:

It is acceptable to keep one or two extra digits during intermediate steps of
a calculation to minimize round-off errors in the calculation. But the final
answer must be reported with the proper number of significant figures.

Exercise 15

Using significant figures when measuring the velocity of a car

To measure the velocity of a car, clocks A and B are set up at two
points along the road, as shown in FIGURE 1.20. Clock A is pre-
cise to 0.01 s, while clock B is precise to only 0.1 s. The distance
between these two clocks is carefully measured to be 124.5 m.
The two clocks are automatically started when the car passes a
trigger in the road; each clock stops automatically when the car
passes that clock. After the car has passed both clocks, clock A is
found to read t, = 1.22 s, and clock B to read tg =4.5s. The
time from the less-precise clock B is correctly reported with
fewer significant figures than that from A. What is the velocity of
the car, and how should it be reported with the correct number of
significant figures?

FIGURE 1.20 Measuring the velocity of a car.
A B

% @

I |

Ax=1245m ‘

.
F.

Both clocks start when the
car crosses this trigger.

STRATEGIZE To find the car’s velocity with the correct pre-
cision, we will need to take into account the significant fig-
ures in the measured quantities and then apply the rules of
Tactics Box 1.1.

PREPARE To calculate the velocity, we need the displacement
Ax and the time interval Af as the car moves between the two
clocks. The displacement is given as Ax = 124.5m; we can

Scientific Notation

calculate the time interval as the difference between the two mea-
sured times.

SOLVE The time interval is

This number has
two decimal places.

This number has
one decimal place.

At=tg—ta=(@45s)—(1.225) =33 s
o

By rule 2 of Tactics Box 1.1, the
result should have one decimal place.

We can now calculate the velocity with the displacement and the
time interval:

The displacement has
four significant figures. ..,

_Ax _1245m

p= =
At 3.3s
A
The time interval has«-"
two significant figures.

=§‘8m/s

By ruie 1 of Tactics Box 1.1, the result
should have two significant figures.

ASSESS Our final value has two significant figures. Suppose
you had been hired to measure the speed of a car this way, and
you reported 37.72 m/s. It would be reasonable for someone
looking at your result to assume that the measurements you used
to arrive at this value were correct to four significant figures and
thus that you had measured time to the nearest 0.001 second. Our
correct result of 38 m/s has all of the accuracy that you can claim,
but no more!

It’s easy to write down measurements of ordinary-sized objects: Your height might
be 1.72 meters, the weight of an apple 0.34 pound. But the radius of a hydrogen
atom is 0.000 000 000 053 m, and the distance to the moon is 384,000,000 m. Keep-

ing track of all those zeros is quite cumbersome.
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Beyond requiring you to deal with all the zeros, writing quantities this way makes
it unclear how many significant figures are involved. For the distance to the moon,
how many of those digits are significant? Three? Four? All nine?

Writing numbers using scientific notation avoids both these problems. A value
in scientific notation is a number with one digit to the left of the decimal point and
zero or more to the right of it, multiplied by a power of ten. This solves the problem
of writing so many zeros and makes the number of significant figures immediately
apparent. In scientific notation, writing the distance to the moon as 3.84 X 10 m
indicates that three digits are significant; writing it as 3.8 X 10® m indicates that only
two digits are.

Even for smaller values, scientific notation can clarify the number of significant
figures. Suppose a distance is reported as 1200 m. How many significant figures
does this measurement have? It’s ambiguous, but using scientific notation can
remove any ambiguity. If this distance is known to within 1 m, we can write it as
1.200 X 10° m, showing that all four digits are significant; if it is accurate to only
100 m or so, we can report it as 1.2 X 10° m, indicating two significant figures.

E%():(T:FZS Using scientific notation

To convert a number into scientific notation:

© For a number greater than 10, move the decimal point to the left until only
one digit remains to the left of the decimal point. The remaining number
is then multiplied by 10 to a power; this power is given by the number of
spaces the decimal point was moved. Here we convert the radius of the
earth to scientific notation:

We move the decimal point until there is only Since we moved the decimal point
one digit to its left, counting the number of steps. 6 steps, the power of ten is 6.
g o
... 6370000 m = 6.37 X 10°'m
R IVVIVIVIVY; =

®......The number of digits here equals
the number of significant figures.

® For a number less than 1, move the decimal point to the right until it passes
the first digit that isn’t a zero. The remaining number is then multiplied
by 10 to a negative power; the power is given by the number of spaces the
decimal point was moved. For the diameter of a red blood cell we have:

We move the decimal point until it passes the first Since we moved the decimal point
digit that is not a zero, counting the number of steps. 6 steps, the power of ten is —6.
g e S
.. 0.000007 5m=7.5X10"%m
EEAVIVIVEVIVIC) ~

... The number of digits here equals
the number of significant figures.

Exercise 16

< The importance of units In 1999, the $125 million Mars Climate
Orbiter burned up in the Martian atmosphere instead of entering a safe orbit
from which it could perform observations. The problem was faulty units!

An engineering team had provided critical data on spacecraft performance
in English units, but the navigation team assumed these data were in metric
units. As a consequence, the navigation team had the spacecraft fly too close
to the planet, and it burned up in the atmosphere.

Units

As we have seen, in order to measure a quantity we need to give it a numerical
value. But a measurement is more than just a number—it requires a unit to be given.
You can’t go to the deli and ask for “three quarters of cheese.” You need to use a
unit—here, one of weight, such as pounds—in addition to the number.
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In your daily life, you probably use the English system of units, in which dis-
tances are measured in inches, feet, and miles. These units are well adapted for daily
life, but they are rarely used in scientific work. Given that science is an international
discipline, it is also important to have a system of units that is recognized around the
world. For these reasons, scientists use a system of units called le Systéme Interna-
tionale d’Unités, commonly referred to as Sl units. We often refer to these as metric
units because the meter is the basic standard of length.

The three basic SI quantities, shown in TABLE 1.1, are time, length (or distance),
and mass. The SI units for these quantities are meters, seconds, and kilograms,
respectively. Other quantities needed to understand motion can be expressed as com-
binations of these basic units. For example, speed and velocity are expressed in
meters per second or m/s. This combination is a ratio of the length unit (the meter)
to the time unit (the second).

Using Prefixes

We will have many occasions to use lengths, times, and masses that are either much
less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We
will do so by using prefixes to denote various powers of ten. For instance, the prefix
“kilo” (abbreviation k) denotes 103, or a factor of 1000. Thus 1 km equals 1000 m,
1 MW (megawatt) equals 10° watts, and 1 wV (microvolt) equals 107 volts. TABLE 1.2
lists the common prefixes that will be used frequently throughout this text. A more
extensive list of prefixes is shown at the front of the text.

Although prefixes make it easier to talk about quantities, those given with pre-
fixed units are usually converted to base SI units of seconds and meters before any
calculations are done. Thus 23.0 cm should be converted to 0.230 m before starting
calculations. (The exception is the kilogram, which is already the base SI unit.)

Unit Conversions Between Measurement Systems

Although ST units are our standard, we cannot entirely forget that the United States
still uses English units. Even after repeated exposure to metric units in classes, most
of us “think” in English units. Thus it remains important to be able to convert back
and forth between SI units and English units. TABLE 1.3 shows some frequently used
conversions that will come in handy.

One effective method of performing unit conversions begins by noticing that
since, for example, 1 mi = 1.609 km, the ratio of these two distances—including
their units—is equal to 1, so that

Imi _ 1609km _
1.609 km

1 mi

A ratio of values equal to 1 is called a conversion factor. The following Tactics Box
shows how to make a unit conversion.

E%?(T:%s Making a unit conversion
© Start with the
quantity you wish
to convert.

@ Multiply by the appropriate conversion factor. Because
this conversion factor is equal to 1, multiplying by it does
not change the value of the quantity—only its units.
>
————— = 96.54 km = 97 km
: A ]
© You can cancel the original unit -
(here, miles) because it appears in both
the numerator and the denominator.

More complicated conversions can be done with several successive multiplications
of conversion factors, as we see in the example on the next page.

TABLE 1.1 Common Sl units

Quantity  Unit Abbreviation
Time second s
Length meter m
Mass kilogram kg

TABLE 1.2 Common prefixes for powers
of 10

Prefix Abbreviation Power of 10
mega- M 10°
kilo- k 10°
centi- c 1072
milli- m 1073
micro- " 107
nano- n 107°

TABLE 1.3 Useful unit conversions
1 inch (in) =2.54 cm

1 foot (ft) = 0.305 m

1 mile (mi) = 1.609 km

1 mile per hour (mph) = 0.447 m/s
1 m=39.37in

1 km = 0.621 mi

1 m/s = 2.24 mph

@ Remember to convert your final
answer to the correct number of
significant figures!

O Calculate the answers; it is in the desired units.
Remember, 60 mi and 96.54 km are the same
distance; they are simply in different units.

Exercise 17
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Can a bicycle go that fast?

In Section 1.4, we calculated
the speed of a bicycle to be 20
ft/s. Is this a reasonable speed
for a bicycle?

STRATEGIZE In order to deter-
mine whether or not this speed
is reasonable, we will convert it

to more familiar units. For speed, the unit you are most familiar

with is likely miles per hour.

PREPARE We need the following unit conversions:

1 mi = 5280 ft

soLVE We then multiply our original value by successive factors

of 1 in order to convert the units:

TABLE 1.4 Some approximate
conversion factors

1 hour (1 h) = 60 min

Approximate

Quantity ST unit conversion
Mass kg lkg=21Ib
Length m Im=3ft

cm 3cm = lin

km 5km = 3 mi
Speed m/s 1 m/s = 2 mph

km/h 10 km/h = 6 mph

. _ 1m
... so we multiply by 1 = 5380 it

to get the feet in the denominator.

We want to cancel feet
here in the numerator . . .

Toap Imie 607  60mi _ |, mi_
20 £ x o X T = 147 = 14 mph

s 7 x 7 5280 f¢
The unwarited units cafcel in
pairs, as indicated by the colors.

20

ASSESS Our final result of 14 miles per hour (14 mph) is a very
reasonable speed for a bicycle, which gives us confidence in our
answer. If we had calculated a speed of 140 miles per hour, we
would have suspected that we had made an error because this is
quite a bit faster than the average bicyclist can travel!

1 min =60 s

< The man has a mass of 70 kg. What is the mass of the elephant standing
next to him? By thinking about the relative dimensions of the two, you
can make a reasonable one-significant-figure estimate.

Estimation

Precise calculations are appropriate when we have precise data, but there are many
times when just a rough estimate is sufficient. Suppose you saw a rock fall off a cliff
and wanted to know how fast it was going when it hit the ground. By doing a mental
comparison with the speeds of familiar objects, such as cars and bicycles, you might
judge that the rock was traveling at about 20 mph.

This is a one-significant-figure estimate: You can probably distinguish 20 mph
from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph from
21 mph just from an observation. A one-significant-figure estimate or calculation,
such as this estimate of speed, is called an order-of-magnitude estimate. An order-
of-magnitude estimate is indicated by the symbol ~ , which indicates even less pre-
cision than the “approximately equal” symbol = . You would report your estimate
of the speed of the falling rock as v ~ 20 mph.

It’s a useful skill to make reliable order-of-magnitude estimates on the basis of
known information (or information found on the Internet), simple reasoning, and
common sense. It may help to convert from SI units to more familiar units to make
such estimates. You can also do this to assess problem solutions given in SI units.
TABLE 1.4 lists some approximate conversion factors to apply in such cases.

How fast do you walk?

Estimate how fast you walk, in meters per second.

STRATEGIZE In this example we're asked for an estimate of
your walking speed, so we’ll need to use only rough values
obtained from our everyday experience of walking.

PREPARE In order to compute speed, we need a distance and a
time. If you walked a mile to campus, how long would this take?
You’d probably say 30 minutes or so—half an hour. Let’s use this
rough number in our estimate.
SoLVE Given this estimate, we compute your speed as

distance 1 mile mi

speed = e ~12howr - h

But we want the speed in meters per second. Since our calcu-
lation is only an estimate, we use an approximate conversion fac-
tor from Table 1.4:

mi
h

This gives an approximate walking speed of 1 m/s.

m
1 0.5 —
s

ASSESS Is this a reasonable value? Let’s do another estimate.
Your stride is probably about | yard long—about I meter. And
you take about one step per second; next time you are walking,
you can count and see. So a walking speed of 1 meter per second
sounds pretty reasonable.
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Rank in order, from the most to the fewest, the number

of significant figures in the following numbers. For example, if B has more than
C, C has the same number as A, and A has more than D, give your answer as
B>C=A > D.

A. 0.43 B. 0.0052 C. 0.430 D. 4.321 x 10710

1.6 Vectors and Motion: A First Look

Many physical quantities, such as time, temperature, and mass, can be described
completely by a number with a unit. For example, the mass of an object might be
6 kg and its temperature 30°C. When a physical quantity is described by a single
number (with a unit), we call it a scalar quantity. A scalar can be positive, negative,
Or Zero.

Many other quantities, however, have a directional quality and cannot be
described by a single number. To describe the motion of a car, for example, you
must specify not only how fast it is moving, but also the direction in which it is mov-
ing. A vector quantity is a quantity that has both a size (How far? or How fast?) and
a direction (Which way?). The size or length of a vector is called its magnitude.
The magnitude of a vector can be positive or zero, but it cannot be negative.

We graphically represent a vector as an arrow, as illustrated for the velocity
and force vectors. The arrow is drawn to point in the direction of the vector quantity,
and the length of the arrow is proportional to the magnitude of the vector quantity.

When we want to represent a vector quantity with a symbol, we need somehow
to indicate that the symbol is for a vector rather than for a scalar. We do this by
drawing an arrow over the letter that represents the quantity. Thus 7 and A are
symbols for vectors, whereas r and A, without the arrows, are symbols for scalars.
In handwritten work you must draw arrows over all symbols that represent vectors.
This may seem strange until you get used to it, but it is very important because we
will often use both r and 7 or both A and A in the same problem, and they mean
different things!

» The arrow over the symbol always points to the right, regardless of
which direction the actual vector points. Thus we write 7 or A, never ForA. «

Displacement Vectors

For motion along a line, we found in Section 1.3 that the displacement is a quantity
that specifies not only how far an object moves but also the direction—to the left or
to the right—that the object moves. Since displacement is a quantity that has both a
magnitude (How far?) and a direction, it can be represented by a vector, the
displacement vector. FIGURE 1.21 shows the displacement vector for Sam’s trip that
we discussed earlier. We’ve simply drawn an arrow—the vector—from his initial to
his final position and assigned it the symbol c_z’)s‘ Because c_fs has both a magnitude
and a direction, it is convenient to write Sam’s displacement as c_fs = (100 ft, east).
The first value in the parentheses is the magnitude of the vector (i.e., the size of the
displacement), and the second value specifies its direction.

Also shown in Figure 1.21 is the displacement vector d )y for Jane, who started on
12th Street and ended up on Vine. As with Sam, we draw her displacement vector as
an arrow from her initial to her final position. In this case, d ;= (100 ft,
60° north of east).

Jane’s trip illustrates an important point about displacement vectors. Jane started
her trip on 12th Street and ended up on Vine, leading to the displacement vector

19

Scalars and vectors

Scalars

8.8 88

Time, temperature, and mass are all sca-
lar quantities. To specify the current time,
the temperature outside, or your mass, we
need only a single number.

Vectors

The velocity of the race car is a vector.
To fully specify a velocity, we need to
give its magnitude (e.g., 120 mph) and its
direction (e.g., west).

The force with which the boy pushes on
his friend is another example of a vector.
To completely specify this force, we must
know not only how hard he pushes (the
magnitude) but also in which direction.

FIGURE 1.21 Two displacement vectors.

Jane end

Sam start Sam end

@——[2th Strect @ @

.

Jane start ds
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The boat’s displacement is the straight-
line connection from its initial to its final

position.

FIGURE 1.22 Sam undergoes two

displacements.

Vine

Sam end

d,

12th Street

Sam start

shown. But to get from her initial to her final position, she didn’t have to walk along
the straight-line path denoted by L_i}. If she walked east along 12th Street to the inter-
section and then headed north on Vine, her displacement would still be the vector
shown. An object’s displacement vector is drawn from the object’s initial posi-
tion to its final position, regardless of the actual path followed between these
two points.

Vector Addition

Let’s consider one more trip for the peripatetic Sam. In FIGURE 1.22, he starts at the
intersection and walks east 50 ft; then he walks 100 ft to the northeast through a
vacant lot. His displacement vectors for the two legs of his trip are labeled d 1 and 32
in the figure.

Sam’s trip consists of two legs that can be represented by the two vectors d 1 and
c_fz, but we can represent his trip as a whole, from his initial starting position to his
overall final position, with the ner displacement vector labeled gne[. Sam’s net dis-
placement is in a sense the sum of the two displacements that made it up, so we
can write

- - -

dyey = di t dy

Sam’s net displacement thus requires the addition of two vectors, but vector addi-
tion obeys different rules from the addition of two scalar quantities. The directions
of the two vectors, as well as their magnitudes, must be taken into account. Sam’s
trip suggests that we can add vectors together by putting the “tail” of one vector at
the tip of the other. This idea, which is reasonable for displacement vectors, in fact is
how any two vectors are added. Tactics Box 1.4 shows how to add two vectors A and
Bto get their vector sum A+B.

E%():(T:(.:“s Adding vectors

To add B to A: © Draw A. /
A
Ti
p\
/ B @ Place the tail of fy A
< B at the tip of A. B
Tail
© Draw an arrow from i

the tail of A to the
tip of B. This is
vector A + B.

o

A+B

Exercise 21

Vectors and Trigonometry

When we need to add displacements or other vectors in more than one dimension,
we’ll end up computing lengths and angles of triangles. This is the job of trigonom-
etry. FIGURE 1.23 reviews the basic ideas of trigonometry.
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We specify the sides of a
right triangle in relation
to one of the angles.

The sine, cosine, and
tangent of angle 6
are defined as ratios
of the side lengths.

The longest This is
side, opposite to  the side
the right opposite ., 0
e sin § = —
angle, is the to angle 0. H
hypotenuse.
B E A
g cos = o
oy J
H 0 o
tan 0 = —
A

As..
This is the side
adjacent to angle 6.

We can rearrange
these equations in
useful ways:

O = Hsin 6
A =H cos 6

The three sides are related
by the Pythagorean theorem:

H=VA>+0*

Given the length of the
hypotenuse and one angle,
we can find the side lengths.

y is opposite to the angle;
use the sine formula.

x is adjacent to the angle;
use the cosine formula.

x = (20 cm) cos (30°) = 17 cm
y = (20 c¢m) sin (30°) = 10 cm

1.6 Vectors and Motion: A First Look

Relating sides and angles of right triangles using trigonometry.

Inverse trig
functions let us
find angles
given lengths.

0 =sin"! <Q)
H

6 =cos ! <é)
H

0 =tan! <Q>
A

If we are given the lengths
of the triangle’s sides, we
can find angles.

6 is adjacent to the 10 cm
side; use the cos’ ! formula.

¢ is opposite to the 10 cm
side; use the sin™! formula.

10 cm
0 = cos ! = 60°
o <20 cm)

10 cm
=sin”! =30°
¢ =sin <20 cm)

Using the information in Figure 1.23, what ‘

is the distance x, to the nearest cm, in the triangle at the right?

A. 26 cm B. 20 cm C. 17 cm D. 15 cm

EXAMPLE 1.6 How far north and east?

Suppose Alex is navigating using a compass. She starts walking
at an angle 60° north of east and walks a total of 100 m. How far
north is she from her starting point? How far east?

STRATEGIZE We'll need to use trigonometry to solve this prob-
lem. To do so, we’ll need to sketch the situation so that we can
identify a right triangle along with its hypotenuse and adjacent
and opposite sides.

PREPARE A sketch of Alex’s motion is shown in FIGURE 1.24a.
We’ve shown north and east as they are on a map, and we’ve
noted Alex’s displacement as a vector, giving its magnitude and
direction. FIGURE 1.24b shows a triangle with this displacement
as the hypotenuse. Alex’s distance north of her starting point is
this triangle’s opposite side, and her distance east of her starting
point is its adjacent side.

SOLVE Because we want to find O and A for a triangle with
6 = 60° and H = 100 m, we use the equations O = H sin 6 and
A = H cos 0, giving

distance north of start = (100 m) sin (60°) = 87 m

distance east of start = (100 m) cos (60°) = 50 m

ASSESS Both of the distances we calculated are less than 100 m,
as they must be, and the distance east is less than the distance

30 cm

north, as our diagram in Figure 1.24b shows it should be. Our
answers seem reasonable. In finding the solution to this problem,
we “broke down” the displacement into two different distances,
one north and one east. This hints at the idea of the components
of a vector, something we’ll explore in the next chapter.

FIGURE 1.24 An analysis of Alex’s motion.

(a) (b)
North
d= (100 m, 60° north of east)

The displacement is the
hypotenuse of the triangle.

Distance
north of
start

60°
¢ East

Distance east of start
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How far away is Anna?

Anna walks 90 m due east and then 50 m due north. What is her
displacement from her starting point?

STRATEGIZE Again, we will need to use trigonometry to solve
this problem, so we’ll draw a right triangle and identify its sides.

PREPARE Let’s start with the sketch in FIGURE 1.25a. We set up
a coordinate system with Anna’s original position as the origin,
and then we drew her two subsequent motions as the two dis-
placement vectors 31 and 32.

FIGURE 1.25 Analyzing Anna’s motion.

(a) (b)

North

50 .

dnct N dnet
R dy 50 m
d;
0 T L East

50 100 90 m

SOLVE We drew the two vector displacements with the tail of
one vector starting at the tip of the previous one—exactly what is
needed to form a vector sum. The vector El:m in Figure 1.25a is the
vector sum of the successive displacements and thus represents
Anna’s net displacement from the origin.

Anna’s distance from the origin is the length of this vector
anel. FIGURE 1.25b shows that this vector is the hypotenuse of a
right triangle with sides 50 m (because Anna walked 50 m north)
and 90 m (because she walked 90 m east). We can compute the
magnitude of this vector, her net displacement, using the Pythag-
orean theorem:

dpe = V(50 m)* + (90 m)> =103 m =~ 100 m

‘We have rounded off to the appropriate number of significant fig-
ures, giving us 100 m for the magnitude of the displacement vec-
tor. How about the direction? Figure 1.25b identifies the angle
that gives the angle north of east of Anna’s displacement. In the
right triangle, 50 m is the opposite side and 90 m is the adjacent
side, so the angle is

50 5
6= tan_l(g()%) = tan_]<§) =29°

Putting it all together, we get a net displacement of

det = (100 m, 29° north of east)

ASSESS We can use our drawing to assess our result. If the two
sides of the triangle are 50 m and 90 m, a length of 100 m for the
hypotenuse seems about right. The angle is certainly smaller than
45°, but not too much smaller, so 29° seems reasonable.

FIGURE 1.26 The motion diagram for a
car starting from rest.

The displacement vectors are lengthening.

This means the car is speeding up.

Os s 253 3s 4s
(@) [ OP- @ @ @il @

Start
(b) ¥ OP- 0P @ @i @

ol R

The longcr'\/clocily vectors also
indicate that the car is speeding up.

Velocity Vectors

We’ve seen that a basic quantity describing the motion of an object is its velocity.
Velocity is a vector quantity because its specification involves how fast an object is
moving (its speed) and also the direction in which the object is moving. We thus
represent the velocity of an object by a velocity vector ¥ that points in the direction
of the object’s motion, and whose magnitude is the object’s speed.

FIGURE 1.26a shows the motion diagram of a car accelerating from rest. We’ve
drawn vectors showing the car’s displacement between successive positions in the
motion diagram. To draw the velocity vectors, first note that the direction of the dis-
placement vector is the direction of motion between successive points in the motion
diagram. The velocity of an object also points in the direction of motion, so the
velocity vector points in the same direction as its displacement vector. Next, note
that the magnitude of the velocity vector—How fast?—is the object’s speed. Higher
speeds imply greater displacements, so the length of the velocity vector should be
proportional to the length of the displacement vector between successive points on a
motion diagram. All this means that the vectors connecting each dot of a motion
diagram to the next dot, which we have labeled as displacement vectors, could
equally well be identified as velocity vectors, as shown in FIGURE 1.26b. From now
on, we’ll show and label velocity vectors on motion diagrams rather than dis-
placement vectors.

» The velocity vectors shown in Figure 1.26b are actually average veloc-
ity vectors. Because the velocity is steadily increasing, it’s a bit less than this
average at the start of each time interval, and a bit greater at the end. In Chapter 2
we’ll refine these ideas as we develop the idea of instantaneous velocity. «



Drawing a ball’s motion diagram

Jake hits a ball at a 60° angle from the horizontal. It is caught by
Jim. Draw a motion diagram of the ball that shows velocity vec-
tors rather than displacement vectors.

STRATEGIZE This example is typical of how many problems
in physics are worded. The problem does not give a clear state-
ment of where the motion begins or ends. Are we interested in
the motion of the ball only during the time it is in the air between
Jake and Jim? What about the motion as Jake hits it (ball rapidly
speeding up) or as Jim catches it (ball rapidly slowing down)?
Should we include Jim dropping the ball after he catches it? The
point is that you will often be called on to make a reasonable
interpretation of a problem statement. In this problem, the details
of hitting and catching the ball are complex. The motion of the
ball through the air is easier to describe, and it’s a motion you
might expect to learn about in a physics class. So our interpre-
tation is that the motion diagram should start as the ball leaves
Jake’s bat (ball already moving) and should end the instant it
touches Jim’s hand (ball still moving).

PREPARE We model the ball as a particle, and sketch a motion
diagram that represents the motion of a thrown ball along an arc.

SOLVE FIGURE 1.27 shows the motion diagram of the ball. Notice
how, in contrast to the car of Figure 1.26, the ball is already mov-
ing as the motion diagram begins. As before, the velocity vectors
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are shown by connecting the dots with arrows. You can see that
the velocity vectors get shorter (ball slowing down), get longer
(ball speeding up), and change direction. Each v is different, so
this is not constant-velocity motion.

FIGURE 1.27 The motion diagram of a ball traveling from Jake
to Jim.

~

Jake Jim

<l

ASSESS We haven’t learned enough to make a detailed analysis
of the motion of the ball, but it’s still worthwhile to do a quick
assessment. Does our diagram make sense? Think about the
velocity of the ball—we show it moving upward at the start and
downward at the end. This does match what happens when you
toss a ball back and forth, so our answer seems reasonable.

Pand é are two vectors of equal length but different direction. Which vector

shows the sum P + Q?

~b NN

1.7 Where Do We Go from Here?

This first chapter has been an introduction to some of the fundamental ideas
about motion and some of the basic techniques that you will use in the rest of the
course. You have seen some examples of how to make models of a physical situ-
ation, thereby focusing on the essential elements of the situation. You have
learned some practical ideas, such as how to convert quantities from one set of
units to another. The rest of this text—and the rest of your course—will extend
these themes.

In each chapter of this text, you’ll learn both new principles and more tools and
techniques. As you proceed, you’ll find that each new chapter depends on those that
preceded it. The principles and the problem-solving strategies you learned in this
chapter will still be needed in Chapter 30.

We’ll give you some assistance integrating new ideas with the material of previ-
ous chapters. When you start a chapter, the chapter preview will let you know
which topics are especially important to review. And the last element in each chapter
will be an integrated example that brings together the principles and techniques
you have just learned with those you learned previously. The integrated nature of

@ Chapter 28 ends with an integrated
example that explores the basic physics
of magnetic resonance imaging (MRI),
explaining how the interaction of
magnetic fields with the nuclei of atoms
in the body can be used to create an
image of the body’s interior.
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these examples will also be a helpful reminder that the problems of the real world
are similarly complex, and solving such problems requires you to do just this kind of

integration.

Our first integrated example is reasonably straightforward because there’s not

much to integrate yet. The examples in future chapters will be much richer.

A goose gets its bearings ()

Migrating geese determine direction using many different tools:
by noting local landmarks, by following rivers and roads, and by
using the position of the sun in the sky. When the weather is
overcast so that they can’t use the sun’s position to get their bear-
ings, geese may start their day’s flight in the wrong direction.
FIGURE 1.28 shows the path of a Canada goose that flew in a
straight line for some time before making a corrective right-angle
turn. One hour after beginning, the goose made a rest stop on a
lake due east of its original position.

FIGURE 1.28 Trajectory of a misdirected goose.
In

Start of journey End of journey (lake)

a. How much extra distance did the goose travel due to its initial
error in flight direction? That is, how much farther did it fly
than if it had simply flown directly to its final position on the
lake?

b. What was the flight speed of the goose?

c. A typical flight speed for a migrating goose is 80 km/h. Given
this, does your result seem reasonable?

STRATEGIZE In this integrated example, we’ll need to pull
together all our knowledge about right triangles, speed, and sig-
nificant figures.

PREPARE Figure 1.28 shows the trajectory of the goose, but it’s
worthwhile to redraw Figure 1.28 and note the displacement from
the start to the end of the journey, the shortest distance the goose
could have flown. (The examples in the chapter to this point have
used professionally rendered drawings, but these are much more
careful and detailed than you are likely to make. FIGURE 1.29
shows a drawing that is more typical of what you might actu-
ally do when working problems yourself.) Drawing and label-
ing the displacement between the starting and ending points in
Figure 1.29 show that it is the hypotenuse of a right triangle, so
we can use our rules for triangles as we look for a solution.

FIGURE 1.29 A typical student sketch shows the motion and
the displacement of the goose.

----------- The displacement

d is the hypotenuse of

° i aright triangle, with
the two legs of the

journey as the sides.

2/ mi 28mi

SOLVE

a. The minimum distance the goose could have flown, if it flew
straight to the lake, is the hypotenuse of a triangle with sides
21 mi and 28 mi. This straight-line distance is

d="V (21 mi)*+ (28 mi)’ = 35 mi

The actual distance the goose flew is the sum of the distances
traveled for the two legs of the journey:

distance traveled = 21 mi + 28 mi = 49 mi

The extra distance flown is the difference between the actual
distance flown and the straight-line distance—namely,
14 miles.

b. To compute the flight speed, we need to consider the distance
that the bird actually flew. The flight speed is the total dis-
tance flown divided by the total time of the flight:

_49mi 49 mi/h
"“Ton ™

c. To compare our calculated speed with a typical flight speed,
we must convert our solution to km/h, rounding off to the cor-
rect number of significant figures:

T A calculator will return many more
digits, but the original data had only
two significant figures, so we report
the final result to this accuracy.

mi, 1.61 km _
P Toomi P h

ASSESS In this case, an assessment was built into the solution
of the problem. The calculated flight speed matches the expected
value for a goose, which gives us confidence that our answer is
correct. As a further check, our calculated net displacement of
35 mi seems about right for the hypotenuse of the triangle in
Figure 1.29.
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SUMMARY

[c{e):\M To introduce the fundamental concepts of motion and to review related basic mathematical principles.

IMPORTANT CONCEPTS |
Motion Diagrams

The particle model represents a moving object as if all its mass

were concentrated at a single point. Using this model, we can

represent motion with a motion diagram, where dots indicate the

object’s positions at successive times. In a motion diagram, the
time interval between successive dots is always the same.

Each dot represents the position of the object. Each
position is labeled with the time at which the dot was there.

254" 3s 4s S5s 65
e - o : o e o oo

The time interval between
successive positions is the same.

Scalars and Vectors

Scalar quantities have only a magnitude and
can be represented by a single number.
Temperature, time, and

mass are scalars.

~ e

irection

A vector is a quantity
described by both a mag-
nitude and a direction.
Velocity and displacement
are vectors.

The length of a vector
*is proportional to its
magnitude.

Velocity vectors span
successive points inesss=...,
a motion diagram.

Velocity vectors can

be drawn on a motion >

dlagram by cqnnect}ng Start - The velocity
successive points with a . vectors are getting longer,
vector. v so the object is speeding up.
APPLICATIONS

i
Working with Numbers

In scientific notation, a number is expressed as a decimal
number between 1 and 10 multiplied by a power of ten. In scien-
tific notation, the diameter of the earth is 1.27 X 107 m.

A prefix can be used before a unit to indicate a multiple of 10 or
1/10. Thus we can write the diameter of the earth as 12,700 km,
where the k in km denotes 1000.

We can perform a unit conversion to convert the diameter of
the earth to a different unit, such as miles. We do so by multiply-
ing by a conversion factor equal to 1, such as 1 = 1 mi/1.61 km.

Describing Motion

Position locates an object with respect to a chosen coordinate
system. It is described by a coordinate.

The coordinate is the variable used to describe the position.

P u 5
T T T T T T T Al T X (mi)

T T T
—675-4-3-2-1 01 2 3745

This cow is at x =—5 miles. This car is at x = +4 miles.

A change in position is called a displacement. For motion along a
line, a displacement is a signed quantity. The displacement from x;
to x¢is Ax = xp — x; .

Time is measured from a particular instant to which we assign
t = 0. A time interval is the elapsed time between two specific
instants #; and 7;. It is given by Ar = #; — 1;.

Velocity is the ratio of the displacement of an object to the time
interval during which this displacement occurs:

_Ax
! At

Units

Every measurement of a quantity must include a unit.

The standard system of units used in science is the S| system.
Common SI units include:

¢ Length: meters (m)
¢ Time: seconds (s)

e Mass: kilograms (kg)

Significant figures are reliably known digits. The number of
significant figures for:

e Multiplication, division, and powers is set by the value with
the fewest significant figures.

* Addition and subtraction is set by the value with the smallest
number of decimal places.

An order-of-magnitude estimate is an estimate that has an
accuracy of about one significant figure. Such estimates are usu-
ally made using rough numbers from everyday experience.



26 cHAPTER 1 Representing Motion

Learning Objectives After studying this chapter, you should be able to:

B Draw and interpret motion diagrams to represent motion.
Conceptual Questions 1.2, 1.13; Problems 1.1, 1.2, 1.3

B Describe motion in terms of position, velocity, and time.
Conceptual Question 1.8; Problems 1.5, 1.6, 1.7, 1.8, 1.9

B Calculate the speed and velocity of an object. Conceptual
Question 1.5; Problems 1.11, 1.12, 1.13, 1.15

B Use scientific notation. Problems 1.23, 1.24, 1.25

Chapter Preview Stop to Think: C. The sides of a right triangle are
related by the Pythagorean theorem. The length of the hypotenuse is

thus V(6 cm)? + (8 cm)? = 10 cm. Note that this triangle is a ver-

sion of a 3-4-5 right triangle; the lengths of the sides are in this ratio.

Stop to Think 1.1: B. The images of B are farther apart, so B travels
a greater distance than does A during the same intervals of time.

Stop to Think 1.2: A. Dropped ball. B. Dust particle. C. Descending
rocket.

Stop to Think 1.3: C. Depending on her initial positive position and
how far she moves in the negative direction, she could end up on
either side of the origin.

STOP TO THINK ANSWERS

B Express quantities with the appropriate units and the proper
number of significant figures. Problems 1.19, 1.20, 1.21, 1.22

B Perform unit conversions. Conceptual Question 1.17; Problems
1.16, 1.17, 1.18

B Describe motion using vectors and trigonometry. Conceptual
Question 1.16; Problems 1.27, 1.28, 1.32, 1.35, 1.38

Stop to Think 1.4: C. Her speed is given by Equation 1.1. Her
speed is the distance traveled (4 miles) divided by the time interval
(2 hours), or 2 mph.

Stop to Think 1.5: D > C > B = A.

Stop to Think 1.6: D. x is the length of the side opposite the 30°
angle, so x = (30 cm) sin 30° = 15 cm.

Stop to Think 1.7: B. The vector sum is found by placing the tail of
one vector at the tip of the other vector.

E Video Tutor Solution Chapter 1

QUESTIONS

Conceptual Questions

1. A softball player slides into second base. Use the particle model
to draw a motion diagram of the player from the time he begins
to slide until he reaches the base. Number the dots in order,
starting with zero.

2. A car travels to the left at a steady speed for a few seconds, then
brakes for a stop sign. Use the particle model to draw a motion
diagram of the car for the entire motion described here. Num-
ber the dots in order, starting with zero.

3. The bush baby, a small African mammal, is a remarkable

B0 jumper. Although only about 8 inches long, it can jump, from a
standing start, straight up to a height of over 7 feet! Use the par-
ticle model to draw a motion diagram for a bush baby’s jump,
from its start until it reaches its highest point.

4. A ball is dropped from the roof of a tall building e 0
and students in a physics class are asked to sketch a

motion diagram for this situation. A student submits el
the diagram shown in Figure Q1.4. Is the diagram cor- 2
rect? Explain. 3

FIGURE Q1.4 ®4

5. Mark and Sofia walk together down a long, straight road. They
walk without stopping for 4 miles. At this point Sofia says their dis-
placement during the trip must have been 4 miles; Mark says their
current position must be 4 miles. Who, if either, is correct? Explain.

6. Give an example of a trip you might take in your car for which the
distance traveled as measured on your car’s odometer is not equal
to the displacement between your initial and final positions.

7. Write a sentence or two describing the difference between
speed and velocity. Give one example of each.

8. The motion of a skateboard along a horizontal axis is observed
for 5 s. The initial position of the skateboard is negative with
respect to a chosen origin, and its velocity throughout the 5 s is
also negative. At the end of the observation time, is the skate-
board closer to or farther from the origin than initially? Explain.

9. You are standing on a straight stretch of road and watching the
motion of a bicycle; you choose your position as the origin. At
one instant, the position of the bicycle is negative and its veloc-
ity is positive. Is the bicycle getting closer to you or farther
away? Explain.

10. Two friends watch a jogger complete a 400 m lap around the track
in 100 s. One of the friends states, “The jogger’s velocity was 4
m/s during this lap.” The second friend objects, saying, “No, the

Problem difficulty is labeled as | (straightforward) to llll (challenging).
INT Problems labeled integrate significant material from earlier
chapters; Bl0 are of biological or medical interest.

jogger’s speed was 4 m/s.” Who is correct? Justify your answer.
E The eText icon indicates when there is a video tutor solution
available for the chapter or for a specific problem.To launch

these videos, log into your eText through Mastering™ Physics or log
into the Study Area.



12.

13.

14.

15.

16.

17.

. A softball player hits the ball and starts running toward first

base. Draw a motion diagram, using the particle model, show-
ing her velocity vectors during the first few seconds of her run.
A child is sledding on a smooth, level patch of snow. She encoun-
ters a rocky patch and slows to a stop. Draw a motion diagram,
using the particle model, showing her velocity vectors.

A skydiver jumps out of an airplane. Her speed steadily
increases until she deploys her parachute, at which point her
speed quickly decreases. She subsequently falls to earth at a
constant rate, stopping when she lands on the ground. Draw a
motion diagram, using the particle model, that shows her posi-
tion at successive times and includes velocity vectors.

Your roommate drops a tennis ball from a third-story balcony. It
hits the sidewalk and bounces as high as the second story. Draw
a motion diagram, using the particle model, showing the ball’s
velocity vectors from the time it is released until it reaches the
maximum height on its bounce.

A car is driving north at a steady speed. It makes a gradual 90°
left turn without losing speed, then continues driving to the
west. Draw a motion diagram, using the particle model, show-
ing the car’s velocity vectors as seen from a helicopter hovering
over the highway.

Three displacement vectors have lengths 1 m, 2 m, and 4 m.
Could they possibly add together to get a vector of length zero?
Your friend Travis claims to have set the new world speed
record for riding a unicycle. His top speed, he says, was 55 m/s.
Do you believe him? Explain.

Multiple-Choice Questions

18.

19.

20.

| A student walks 1.0 mi west and then 1.0 mi north. After-
ward, how far is she from her starting point?

A. 1.O0mi B. 1.4mi C. 1.6 mi D. 2.0 mi

I You throw a rock upward. The rock is moving upward, but it
is slowing down. If we define the ground as the origin, the posi-
tion of the rock is and the velocity of the rock is
A. positive, positive B. positive, negative

C. negative, positive D. negative, negative

| Which of the following motions could be described by the
motion diagram of Figure Q1.20?

A. A hockey puck sliding across smooth ice.

B. A cyclist braking to a stop.

C. A sprinter starting a race.

D. A ball bouncing off a wall.

54 3 2
FIGUREQ1.20 ee o °

21.

22.

23.

BIO

24.

25.

26.

27.

28.

29.
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Problems

| Which of the following motions is described by the motion
diagram of Figure Q1.21?

A. An ice skater gliding across the ice.

B. An airplane braking to a stop after landing.

C. A car pulling away from a stop sign.

D. A pool ball bouncing off a cushion and reversing direction.
FIGUREQ121 oo o o . :

| A bird flies 3.0 km due west and then 2.0 km due north.
What is the magnitude of the bird’s displacement?

A. 20km B. 30km C. 3.6km D. 5.0km

I Weddell seals make holes in sea ice so that they can swim
down to forage on the ocean floor below. Measurements for
one seal showed that it dived straight down from such an open-
ing, reaching a depth of 0.30 km in a time of 5.0 min. What was
the speed of the diving seal?

A. 0.60m/s B. 1.0m/s C.
E. 10 m/s

I A bird flies 3.0 km due west and then 2.0 km due north.
Another bird flies 2.0 km due west and 3.0 km due north. What is
the angle between the net displacement vectors for the two birds?
A. 23° B. 34° C. 56° D. 90°

I Hicham El Guerrouj of Morocco holds the world record in
the 1500 m running race. He ran the final 400 m in a time of
51.9 s. What was his average speed in mph over the last 400 m?
A. 14.2 mph B. 15.5 mph

C. 17.2 mph D. 23.9 mph

| Compute 3.24 m + 0.532 m to the correct number of signifi-
cant figures.

A. 37m B. 3.77m

C. 3.772m D. 37720 m

II' An American football field is 109.7 m long and 48.8 m wide.
To the correct number of significant figures, what is its area?
A. 5351 m? B. 535X 10°m?

C. 5351.17 m? D. 5400 m*

| The earth formed 4.57 X 10° years ago. What is this time in
seconds?

A. 1.67Xx 1075 B. 4.01x10"s

C. 240x10%s D. 1.44x%10"7s

' An object’s average density p is defined as the ratio
of its mass to its volume: p = M/V. The earth’s mass is
5.94 X 10** kg, and its volume is 1.08 X 10> km®. What is the
earth’s average density?
A. 5.50 X 10° kg/m?
C. 5.50 X 10° kg/m’

1.6m/s D. 6.0m/s

B. 5.50 X 10° kg/m?
D. 5.50 X 10'? kg/m?

PROBLEMS

Section 1.1 Motion: A First Look

1.

| A car skids to a halt to avoid hitting an object in the road.
Draw a motion diagram of the car from the time the skid begins
until the instant the car stops.

.| A man rides a bike along a straight road for 5 min, then has a

flat tire. He stops for 5 min to repair the flat, but can’t fix it. He
walks the rest of the way, which takes him another 10 min. Use the
particle model to draw a motion diagram of the man for the entire
motion described here. Number the dots in order, starting with zero.

3.

| Amanda has just entered an elevator. The elevator rises and
stops at the third floor. Use the particle model to draw a motion
diagram of Amanda during her entire ride on the elevator. Num-
ber the dots in order, starting from zero. (Be sure to consider
how the elevator speeds up and slows down.)
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Section 1.2 Models and Modeling

Section 1.3 Position and Time: Putting Numbers on Nature

4,

BIO

9.
BIO

| Figure P1.4 shows Sue along the straight-line path between
her home and the cinema. What is Sue’s position x if

a. Her home is the origin?

b. The cinema is the origin?

Home Sue Cinema

= '

FIGURE P1.4 2 mi 3 mi

. | Figure P1.4 shows Sue along the straight-line path between

her home and the cinema. Now Sue walks home. What is Sue’s
displacement if

a. Her home is the origin?

b. The cinema is the origin?

. | Logan observes a paramecium under a microscope. The eye-

piece of the microscope has a horizontal scale marked in mm.
The paramecium starts at the 65 mm mark and ends up at the
42 mm mark. What is the paramecium’s displacement?

.| Keira starts at position x =23 m along a coordinate axis.

She then undergoes a displacement of —45 m. What is her final
position?

.| A car travels along a straight east-west road. A coordinate

system is established on the road, with x increasing to the east.
The car ends up 14 mi west of the origin, which is defined as
the intersection with Mulberry Road. If the car’s displacement
was —23 mi, what side of Mulberry Road did the car start on?
How far from the intersection was the car at the start?

| Foraging bees often move in straight lines away from and
toward their hives. Suppose a bee starts at its hive and flies
500 m due east, then flies 400 m west, then 700 m east. How
far is the bee from the hive?

Section 1.4 Velocity

10.

1.

14.

| A security guard walks at a steady pace, traveling 110 m in
one trip around the perimeter of a building. It takes him 240 s to
make this trip. What is his speed?

I List the following items in order of decreasing speed, from
greatest to least: (i) A wind-up toy car that moves 0.15 m in
2.5 s. (i) A soccer ball that rolls 2.3 m in 0.55 s. (iii) A bicycle
that travels 0.60 m in 0.075 s. (iv) A cat that runs 8.0 min 2.0 s.

. I Figure P1.12 shows the motion diagram for a horse galloping

in one direction along a straight path. Not every dot is labeled,
but the dots are at equally spaced instants of time. What is the
horse’s velocity

a. During the first 10 seconds of its gallop?

b. During the interval from 30 s to 40 s?

c. During the interval from 50 s to 70 s?

70s 50s  30s 10s
° ° e o 0 o °
T T T T T T —x (m)
FIGURE P1.12 50 150 250 350 450 550 650

. I Tt takes Harry 35 s to walk from x = —12m to x = —47 m.

What is his velocity?
| A dog trots from x = —12m to x =3 m in 10 s. What is its
velocity?

15.

BIO

E Watch Video Solution Problem 1.25

I In Michael Johnson’s world-record 400 m sprint, he ran the
first 100 m in 11.20 s; then he reached the 200 m mark after a
total time of 21.32 s had elapsed, reached the 300 m mark after
31.76 s, and finished in 43.18 s.

a. During what 100 m segment was his speed the highest?

b. During this segment, what was his speed in m/s?

Section 1.5 A Sense of Scale: Significant Figures, Scientific
Notation, and Units

16.

17.

18.
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I Convert the following to SI base units:

a. 9.12 us b. 3.42 km

c. 44 cm/ms d. 80km/h

| Convert the following to SI units:

a. 8.0in b. 66 ft/s c. 60 mph
| Convert the following to SI units:

a. 1.0 hour b. 1.0 day c. 1.0 year
II' How many significant figures does each of the following
numbers have?

a. 6.21 b. 62.1

c. 0.620 d. 0.062

| How many significant figures does each of the following
numbers have?

a. 0.621 b. 0.006200

c. 1.0621 d. 6.21 % 10

| Compute the following numbers to three significant figures.
a. 33.3 X254 b. 33.3-254

c. V333 d. 3333 +254

I If you make multiple mea-

surements of your height,

you are likely to find that the
results vary by nearly half an
inch in either direction due
to measurement error and
actual variations in height.
You are slightly shorter in
the evening, after gravity has
compressed and reshaped
your spine over the course of
a day. One measurement of a
man’s height is 6 feet and 1 inch. Express his height in meters,
using the appropriate number of significant figures.

| Mount Everest has a height of 29,029 ft above sea level.
Express this height in meters, giving your result in scientific
notation with the correct number of significant figures.

Il Blades of grass grow from the bottom, so, as growth occurs,
the top of the blade moves upward. During the summer, when
your lawn is growing quickly, estimate this speed, in m/s. Make
this estimate from your experience noting, for instance, how
often you mow the lawn and what length you trim. Express
your result in scientific notation.

. I Estimate the average speed, in m/s, with which the hair on

your head grows. Make this estimate from your own experience
noting, for instance, how often you cut your hair and how much
you trim. Express your result in scientific notation.

Section 1.6 Vectors and Motion: A First Look

26.

| Loveland, Colorado, is 18 km due south of Fort Collins and
31 km due west of Greeley. What is the distance between Fort
Collins and Greeley?



IE Watch Video Solution Problem 1.41

27. I A city has streets laid out in a square grid, with each block
135 m long. If you drive north for three blocks, then west for
two blocks, how far are you from your starting point?

28. | Joe and Max shake hands and say goodbye. Joe walks east
0.55 km to a coffee shop, and Max flags a cab and rides north
3.25 km to a bookstore. How far apart are their destinations?

29. I In downtown Chicago, the east-west blocks are 400 ft long
while the north-south blocks are 280 ft long. Because of the
many one-way streets, it can be challenging to get around. Veron-
ica starts at the corner of Dearborn and Ohio Streets. She drives
four blocks north to Superior, two blocks east to Wabash, then a
block south to get to her destination at Wabash and Huron. What
is the straight-line distance from her starting point?

30. I A butterfly flies from the top of a tree in the center of a gar-
den to rest on top of a red flower at the garden’s edge. The tree
is 8.0 m taller than the flower, and the garden is 12 m wide.
Determine the magnitude of the butterfly’s displacement.

31. Il A garden has a circular path of radius 50 m. John starts at
the easternmost point on this path, then walks counterclockwise
around the path until he is at its southernmost point. What is
John’s displacement? Use the (magnitude, direction) notation
for your answer.

32. I Luis is visiting a public garden that has a large, circular path.
When he has walked one-quarter of the distance around the
path, the magnitude of his displacement is 180 m. What is the
diameter of the path?

33. | Migrating geese tend to travel at approximately constant

B0 speed, flying in segments that are straight lines. A goose flies
32 km south, then turns to fly 20 km west. Afterward, how far
is the goose from its original position?

34. I A circular test track for cars in England has a circumference
of 3.2 km. A car travels around the track from the southernmost
point to the northernmost point.

a. What distance does the car travel?
b. What is the car’s displacement from its original position?

35. II Black vultures excel at gliding flight; they can move long

B0 distances through the air without flapping their wings while
undergoing only a modest drop in height. A vulture in a typical
glide in still air moves along a path tipped 3.5° below the hori-
zontal. If the vulture moves a horizontal distance of 100 m, how
much height does it lose?

36. I Figure P1.36 shows a map of Olivia’s trip to a coffee shop. She
gets on her bike at Loomis and then rides south 0.8 mi to Broad-
way. She turns east onto Broadway, rides 0.8 mi to where Broad-
way turns, and then continues another 1.2 mi to the shop. What is
the total displacement of her trip, in (magnitude, direction) form?

Start End

Loomis e

Broad>"\30°

FIGURE P1.36 |

37. I The Great Pyramid of Giza is 139 m tall, with a slope of
51.8°. If you were to climb the pyramid from base to top (which
is forbidden!), what distance along the face of the pyramid
would you travel?

38. | A hiker is climbing a steep 10° slope. Her pedometer shows
that she has walked 1500 m along the slope. How much eleva-
tion has she gained?

Problems 29

39. A ball on a porch rolls 60 cm to the porch’s edge, drops
40 cm, continues rolling on the grass, and eventually stops 80
cm from the porch’s edge. What is the magnitude of the ball’s
net displacement, in centimeters?

40. I A kicker punts a football from the very center of the field to
the sideline 43 yards downfield. What is the net displacement
of the ball? (A football field is 53 yards wide.)

Problems 41 and 42 relate to the
gliding flight of flying squirrels.
These squirrels glide from tree to
tree at a constant speed, moving
in a straight line tipped below the
vertical and steadily losing altitude
as they move forward. Short and
long glides have different profiles.
41. I A squirrel completing a short glide travels in a straight line
BIO tipped 40° below the horizontal. The squirrel starts 9.0 m above
the ground on one tree and glides to a second tree that is a hori-
zontal distance of 3.5 m away.
a. What is the length of the squirrel’s glide path?
b. What is the squirrel’s height above the ground when it
lands?
42. I A squirrel in a typical long glide covers a horizontal distance
BO of 16 m while losing 8.0 m of elevation. During this glide,
a. What is the angle of the squirrel’s path below the horizontal?
b. What is the total distance covered by the squirrel?

General Problems

Problems 43 through 49 are motion problems similar to those you
will learn to solve in Chapter 2. For now, simply interpret the prob-
lem by drawing a motion diagram showing the object’s position
and its velocity vectors. Do not solve these problems or do any
mathematics.

43. Il In a typical greyhound race, a dog accelerates to a speed of

B0 20 m/s over a distance of 30 m. It then maintains this speed.
What would be a greyhound’s time in the 100 m dash?

44. I Billy drops a watermelon from the top of a three-story build-
ing, 10 m above the sidewalk. How fast is the watermelon going
when it hits?

45. I A skateboarder starts from rest at the top of a ramp. He rolls
down the ramp and then continues rolling on the smooth, hori-
zontal floor.

46. I A speed skater moving across frictionless ice at 8.0 m/s
hits a 5.0-m-wide patch of rough ice. She slows steadily,
then continues on at 6.0 m/s. What is her acceleration on the
rough ice?

47. I The giant eland, an African antelope, is an exceptional

BO jumper, able to leap 1.5 m off the ground. To jump this high,
with what speed must the eland leave the ground?

48. I A ball rolls along a smooth horizontal floor at 10 m/s, then
starts up a 20° ramp. How high does it go before rolling back
down?

49. I A motorist is traveling at 20 m/s. He is 60 m from a stop light
when he sees it turn yellow. His reaction time, before stepping
on the brake, is 0.50 s. What steady deceleration while braking
will bring him to a stop right at the light?
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cHAPTER 1 Representing Motion

Problems 50 through 54 show a motion diagram. For each of these
problems, write a one or two sentence “story” about a real object
that has this motion diagram. Your stories should talk about peo-
ple or objects by name and say what they are doing. Problems 43
through 49 are examples of motion short stories.

50. |
Stop
FIGURE P1.50 7 O O b -0 0105050
511
V @ @ L
FIGURE P1.51 Stop
52. 1 i
Top view of motion in
a horizontal plane
T @ @ @ \
FIGURE P1.52 Circular arc
53. 1
Start o
v
@ Stop
The two parts of the motion *
diagram are displaced for t
clarity, but the motion actually
occurs along a single line. I
Same
point N
FIGURE P1.53 ./
4. |
5 e N
Vv
FIGURE P1.54

55. I Estimate the length of a human lifetime, in seconds.

56. I On a highway trip, Joseph drives the first 25 miles at 55 mph,
and the next 15 miles at 70 mph. What is his average speed for
this trip?

57. Il Evan is just leaving his house to visit his grandmother. Nor-
mally, the trip takes him 25 minutes on the freeway, going
55 mph. But tonight he’s running 5 minutes late. How fast will
he need to drive on the freeway to make up the 5 minutes?

58. Il Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a
stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
If she later ran the same course again, what constant speed
would let her finish in the same time as in the first race?

59. 1l If you swim with the current in a river, your speed is
increased by the speed of the water; if you swim against the
current, your speed is decreased by the water’s speed. The cur-
rent in a river flows at 0.52 m/s. In still water you can swim at
1.78 m/s. If you swim downstream a certain distance, then back
again upstream, how much longer, in percent, does it take com-
pared to the same trip in still water?

60.
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E Watch Video Solution Problem 1.61

I The end of Hubbard Glacier in Alaska advances by an average of
105 feet per year. What is the speed of advance of the glacier in m/s?
| The earth completes a circular orbit around the sun in one
year. The orbit has a radius of 93,000,000 miles. What is the
speed of the earth around the sun in m/s? Report your result
using scientific notation.
I The Greenland shark is thought to be the longest-living
vertebrate on earth. Early estimates of its maximum age were
based on the fact that such sharks grow in length only about a
centimeter per year, and yet an adult shark can reach a length of
15 feet. Estimate how long a 15 foot shark might have lived. (A
newborn shark is about 1 foot long.)
Il The winner of the 2016 Keystone (Colorado) Uphill/
Downhill mountain bike race finished in a total time of 47
minutes and 25 seconds. The uphill leg was 4.6 miles long, and
on this leg his average speed was 8.75 mph. The downhill leg
was 6.9 miles. What was his average speed on this leg?
Il Shannon decides to check the accuracy of her speedometer.
She adjusts her speed to read exactly 70 mph on her speedom-
eter and holds this steady, measuring the time between suc-
cessive mile markers separated by exactly 1.00 mile. If she
measures a time of 54 s, is her speedometer accurate? If not, is
the speed it shows too high or too low?
I The Nardo ring is a circular test track for cars. It has a cir-
cumference of 12.5 km. Cars travel around the track at a con-
stant speed of 100 km/h. A car starts at the easternmost point of
the ring and drives for 15 minutes at this speed.
a. What distance, in km, does the car travel?
b. What is the magnitude of the car’s displacement, in km,
from its initial position?
c. What is the speed of the car in m/s?
I Motor neurons in mammals transmit signals from the brain
to skeletal muscles at approximately 25 m/s. Estimate how
much time in ms (107 s) it will take for a signal to get from
your brain to your hand.
Il Satellite data taken several times per hour on a particular
albatross showed travel of 1200 km over a time of 1.4 days.
a. Given these data, what was the bird’s average speed in mph?
b. Data on the bird’s position were recorded only intermit-
tently. Explain how this means that the bird’s actual average
speed was higher than what you calculated in part a.
I The bacterium Esch-
erichia coli (or E. coli) is a
single-celled organism that
lives in the gut of healthy
humans and animals. Its
body shape can be modeled
as a 2-um-long cylinder
with a 1 um diameter, and
it has a mass of 1 X 10712 g,
Its chromosome consists of a single double-stranded chain of
DNA 700 times longer than its body length. The bacterium
moves at a constant speed of 20 wm/s, though not always in the
same direction. Answer the following questions about E. coli
using SI base units (unless specifically requested otherwise)
and correct significant figures.
a. What is its length?
b. Diameter?
c. Mass?
d. What is the length of its DNA, in millimeters?
e. If the organism were to move along a straight path, how
many meters would it travel in one day?




IE Watch Video Solution Problems 1.69 and 1.71
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I The bacterium  Esch-
erichia coli (or E. coli) is a
single-celled organism that
lives in the gut of healthy
humans and animals. When
grown in a uniform medium
rich in salts and amino acids,
it swims along zig-zag paths
at a constant speed chang-
ing direction at varying
time intervals. Figure P1.69
shows the positions of an E. coli as it moves from point A to
point J. Each segment of the motion can be identified by two
letters, such as segment BC. During which segments, if any,
does the bacterium have the same
a. Displacement? b. Speed? c. Velocity?
Il The sun is 30° above the horizon. It makes a 52-m-long
shadow of a tall tree. How high is the tree?
[l Weddell seals foraging in open water dive toward the ocean
bottom by swimming forward in a straight-line path tipped
below the horizontal. The tracking data for one seal showed it
taking 4.0 min to descend 360 m below the surface while mov-
ing 920 m horizontally.
a. What was the angle of the seal’s path below the horizontal?
b. What distance did the seal cover in making this dive?
c. What was the seal’s speed, in m/s?
Il Erica is participating in a road race. The first part of the race
is on a 5.2-mile-long straight road oriented at an angle of 25°
north of east. The road then turns due north for another 4.0 mi
to the finish line. In miles, what is the straight-line distance
from the starting point to the end of the race?
Il Whale sharks swim forward while ascending or descending.
They swim along a straight-line path at a shallow angle as they
move from the surface to deep water or from the depths to the
surface. In one recorded dive, a shark started 50 m below the
surface and swam at 0.85 m/s along a path tipped at a 13° angle
above the horizontal until reaching the surface.
a. What was the horizontal distance between the shark’s start-
ing and ending positions?
b. What was the total distance that the shark swam?
c. How much time did this motion take?
Il Starting from its nest, an eagle flies at constant speed for
3.0 min due east, then 4.0 min due north. From there the eagle
flies directly to its nest at the same speed. How long is the eagle
in the air?

FIGURE P1.69
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Problems

' John walks 1.00 km north, then turns right and walks

1.00 km east. His speed is 1.50 m/s during the entire stroll.

a. What is the magnitude of his displacement, from beginning
to end?

b. If Jane starts at the same time and place as John, but walks in
a straight line to the endpoint of John’s stroll, at what speed
should she walk to arrive at the endpoint just when John does?

MCAT-Style Passage Problems
Growth Speed

The images of trees in Figure P1.76 come from a catalog advertising
fast-growing trees. If we mark the position of the top of the tree in
the successive years, as shown in the graph in the figure, we obtain
a motion diagram much like ones we have seen for other kinds of
motion. The motion isn’t steady, of course. In some months the tree
grows rapidly; in other months, quite slowly. We can see, though, that
the average speed of growth is fairly constant for the first few years.

76.
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| What is the tree’s speed of growth, in feet per year, from
t=1yrtot=3yr?

A. 12 ft/yr B. 9 ft/yr

C. 6 ft/yr D. 3 ft/yr

| What is this speed in m/s?

A. 9X 108 m/s B. 3X107° m/s
C. 5X107° m/s D. 2X10%m/s

| At the end of year 3, a rope is tied to the very top of the tree
to steady it. This rope is staked into the ground 15 feet away
from the tree. What angle does the rope make with the ground?
A. 63° B. 60°
C. 30° D. 27°



