

Name _____ Date _____

**Number
Unit 2 Line Master 1a**

Integer Bases and Zero Exponents

1. What about 0?

Choose a number to use as the base. Complete the table.

Power	Standard Form
4 ____	
3 ____	
2 ____	
1 ____	
0 ____	

2. Negative or Not?

Complete the table.

Power	Base	Exponent	Expanded Form	Standard Form
2^3	2	3		
$(-2)^3$				
$-(2^3)$				
-2^3				
$-(-2)^3$				

3. Use the values of these powers to sort them in the table below.

$$-(1^{10}) \quad 1^{10} \quad -1^2 \quad (-1)^3 \quad -(-1^6) \quad -(1^9) \quad (-1)^{100}$$

Positive	Negative

Name _____ Date _____

**Number
Unit 2 Line Master 1b**

Integer Bases and Zero Exponents

4. Calculate:

- the side length of a square with an area of 196 cm^2 .
- the edge length of a cube with a volume of 64 cm^3 .

Extension

5. What is the ones digit of the value of 3^{1992} ? How can you find out?

Hint: Use what you know to figure out what you don't know.