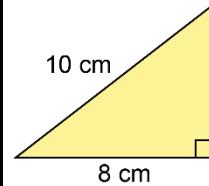


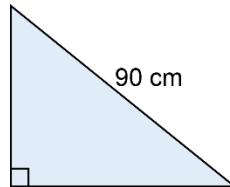
Lesson 4 Assessment


Applying the Pythagorean Theorem to Solve Problems

Content: Applying the Pythagorean Theorem to Solve Problems

Describes how to use the Pythagorean theorem

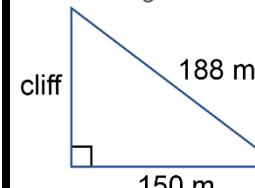
I can substitute the known side lengths into $a^2 + b^2 = c^2$, where a and b are the lengths of the shorter sides and c is the length of hypotenuse, to find the unknown length in a right triangle.


Uses Pythagorean triples to solve a problem

Since $10^2 - 8^2 = 36$ is a perfect square, the side lengths are a Pythagorean triple.

The missing side length is 6 cm.

Uses the Pythagorean theorem to determine an unknown side length


$$\begin{aligned}
 a^2 + b^2 &= c^2 \\
 a^2 + 70^2 &= 90^2 \\
 a^2 + 4900 &= 8100 \\
 a^2 &= 8100 - 4900 \\
 a^2 &= 3200 \\
 a &= \sqrt{3200} \\
 a &\approx 56.6
 \end{aligned}$$

The unknown side length is about 56.6 cm.

Uses the Pythagorean theorem to solve problems involving an unknown side length in a right triangle

A surveyor measures the base of a vertical cliff to be 150 m away and the top of the cliff to be 188 m away. How high is the cliff?

Draw a diagram.

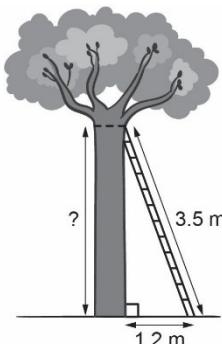
$$\begin{aligned}
 a^2 + b^2 &= c^2 \\
 a^2 + 150^2 &= 188^2 \\
 a^2 + 22\,500 &= 35\,344 \\
 a^2 &= 35\,344 - 22\,500 \\
 a^2 &= 12\,844 \\
 a &= \sqrt{12\,844} \\
 a &\approx 113.33
 \end{aligned}$$

The height of the cliff is about 113.33 m.

Observations/Documentation

Lesson 4 Assessment

Applying the Pythagorean Theorem to Solve Problems


Competency: Problem Solving

Recognizes that a problem involves a right triangle

A family is building a tree fort. They have a ladder that is 3.5 m long. The bottom of the ladder is placed 1.2 m from the base of the tree. How high up the tree will the ladder reach?

“The problem involves a right triangle. The angle between the ground and the tree is a right angle. The ladder represents the hypotenuse of the triangle.”

Draws and labels a diagram that represents the problem, or interprets a given diagram

“The tree, ground, and ladder form a right triangle.”

Records an equation that can be used to solve the problem

“Let b represent the height of the tree in metres.
I can represent the problem with the equation:

$$1.2^2 + b^2 = 3.5^2$$

Flexibly solves the equation to solve the problem, interprets the solution, and confirms that the solution is reasonable

$$\begin{aligned} 1.2^2 + b^2 &= 3.5^2 \\ 1.44 + b^2 &= 12.25 \\ b^2 &= 12.25 - 1.44 \\ b^2 &= 10.81 \\ b &= \sqrt{10.81} \\ b &\approx 3.3 \end{aligned}$$

“The ladder will reach about 3.3 m up the tree.
This seems reasonable because it is less than the hypotenuse, which is always the longest side.”

Observations/Documentation