

Activity 1 Assessment

Representing and Evaluating Polynomials

Content: Exploring Polynomials

Represents polynomials concretely and pictorially and writes a polynomial expression for a given concrete or pictorial representation

x^2	x^2	x^2	x
x	x	x	-1

“These algebra tiles represent the polynomial $3x^2 + 4x - 1$.”

Identifies the different parts of a polynomial (variable, exponent, numerical coefficient, constant term)

“In the polynomial expression $3x^2 + 4x - 1$, 3 and 4 are numerical coefficients, x is the variable, the exponents are 2 and 1, and the constant term is -1 .”

Identifies type of polynomial based on number of terms and names the degree of the polynomial

“The polynomial expression $3x^2 + 4x - 1$ is a trinomial because there are 3 terms. The polynomial is of degree 2 because the greatest exponent of a term is 2.”

Compares polynomials for equivalency

“ $3x^2 + 4x - 1$ and $4x - 1 + 3x^2$ are equivalent polynomials because they can be represented with the same algebra tiles and their graphs are the same.”

Observations/Documentation

--	--	--	--

Activity 1 Assessment

Representing and Evaluating Polynomials

Competency: Representing Polynomials

Represents polynomial expressions concretely or pictorially using algebra tiles

"I used these tiles to represent $4x - 1$."

Records the polynomial expression represented by a set of algebra tiles

"I removed zero pairs, then wrote the expression $x^2 + x - 2$."

Represents and simplifies polynomials concretely and pictorially, to identify equivalent polynomials

"If two polynomials can be represented by the same set of algebra tiles, then they are equivalent."

Flexibly represents polynomials using different models to demonstrate equivalency (e.g., table of values, algebra tiles, graphing)

"The polynomials $x^2 - 2x + 3$ and $-2x + x^2 + 3$ have the same graph, so the polynomials are equivalent."

Observations/Documentation

--	--	--	--