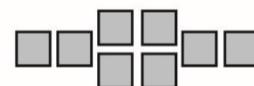

# Answers

1. a) Each pattern is shown as an expression and in another form.  
 Complete the table of values for pattern B.  
 Add graphs of patterns B and C to the graph of pattern A.


$$B: 2x + 4$$



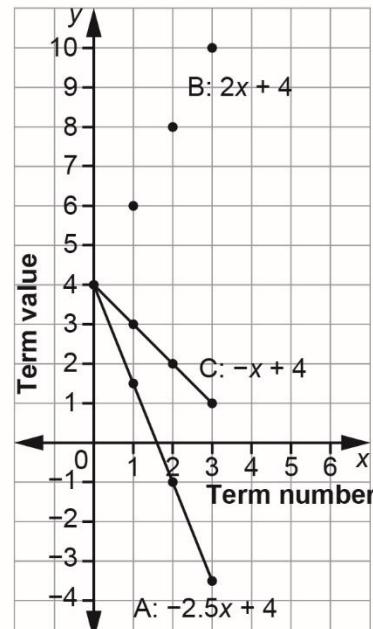
Term 0



Term 1



Term 2




Term 3

| Term number, $x$ | Term value, $y$ |
|------------------|-----------------|
| 0                | 4               |
| 1                | 6               |
| 2                | 8               |
| 3                | 10              |

$$C: -x + 4$$

| $x$ | $-x + 4$ |
|-----|----------|
| 0   | 4        |
| 1   | 3        |
| 2   | 2        |
| 3   | 1        |



## Answers (cont'd)

b) How do the expressions compare?

How do the graphs compare?

Each expression has a constant term of 4.

They all have different coefficients of  $x$ .

The graphs all have the same initial point (0, 4).

Two of the graphs are lines that slope down to the right.

The graph of Pattern B is a series of dots that lie along a line that slopes up to the right.

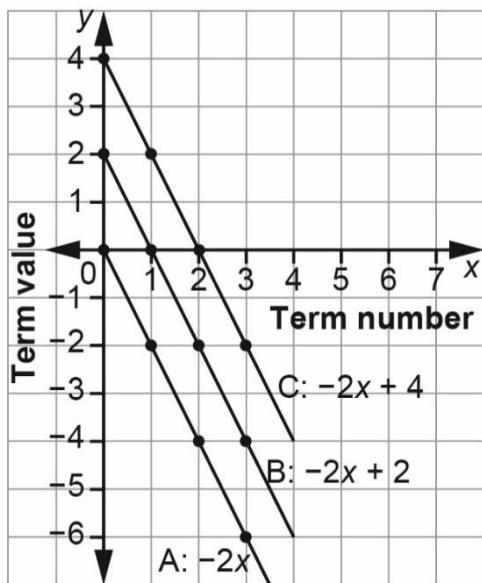
2. a) Each expression represents a pattern.

For each pattern, complete the table.

A:  $-2x$

| $x$ | $-2x$ |
|-----|-------|
| 0   | 0     |
| 1   | -2    |
| 2   | -4    |
| 3   | -6    |

B:  $-2x + 2$


| $x$ | $-2x + 2$ |
|-----|-----------|
| 0   | 2         |
| 1   | 0         |
| 2   | -2        |
| 3   | -4        |

C:  $-2x + 4$

| $x$ | $-2x + 4$ |
|-----|-----------|
| 0   | 4         |
| 1   | 2         |
| 2   | 0         |
| 3   | -2        |

## Answers (cont'd)

b) Graph each pattern on the grid below.  
You can join each set of points with a line.



b) How do the expressions compare?  
How do the lines on the graph compare?

Each expression has a different constant term.  
They all have the same coefficient of  $x$ , which is  $-2$ .  
The graphs all have different initial points.  
All the graphs are lines that slope down to the right and have the same steepness. They are parallel.