

Activity 5 Assessment

Comparing Theoretical and Experimental Probabilities of Two Independent Events

Comparing Theoretical and Experimental Probabilities of Two Independent Events

Determines the theoretical probability of two independent events

The theoretical probability of rolling 5 is $\frac{1}{6}$.

The theoretical probability of tossing heads is $\frac{1}{2}$.

So, the theoretical probability of rolling 5 and tossing heads is:

$$\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}, \text{ or } 0.08\bar{3}, \text{ or } 8.\bar{3}\%$$

Explains how to determine the experimental probability of two independent events

I would conduct the experiment many times, then divide the number of favourable outcomes by the number of times I conducted the experiment.

Uses theoretical probabilities to predict the outcomes of an experiment

The theoretical probability of rolling 5 on a number cube and getting a head on a coin toss is $\frac{1}{12}$.

In an experiment of 100 trials, I would expect this outcome to occur $\frac{1}{12} \times 100 = 8.333\dots$ times, or about 8 times.

Explains how fairness in an experiment or game affects the probabilities

An unfair coin or number cube affects the experimental probability, but not the theoretical probability. A set of outcomes where some are more likely than others affects the fairness of a game.

Observations/Documentation

--	--	--	--